平成22年度

都市環境改善路面緑化システム

に関する調査研究報告書

平成23年3月

財団法人エンジニアリング振興協会

この事業は、競輪の補助金を受けて実施したものです。

http://ringring-keirin.jp

本報告書は、財団法人JKAから機械工業振興資金の補助を受け、財団法人エンジニア リング振興協会が実施した平成22年度「都市環境改善路面緑化システムに関する調査研 究」の成果をとりまとめたものであります。

本調査研究では、地被植物を用いて環境負荷の低減と良好な緑視環境を創出するために、 都市の軌道敷きや駐車場および歩道などのアスファルトやコンクリートで被覆された路面 などで、車両の輪荷重や踏圧の負荷から植物が健全に生育する省管理型の路面緑化システ ムの開発と、これを推進するための方策の検討を目的としています。

植物による温暖化防止や大気浄化は、光合成による CO2の固定やフィルター効果による 浮遊粉塵の吸着等有効な手段です。そのため土木構造物や都市建築物の緑化に積極的に活 用されてきましたが、主に緑化対象は建物屋上や壁面等に限られていました。環境の悪化 とともに都市緑化は急増し、最も緑化が困難である踏圧地についても緑化のニーズが高ま っています。アスファルトやコンクリートで被覆された路面は緑化対象面積が大きく、ま た期待される緑化の効用も大きいものです。このような背景のもと、上記目的達成に向け た調査研究を行いました。

当協会は、創立以来、社会・経済の変化の様相を見定めながら、エンジニアリング及び エンジニアリング産業の新しい活躍の可能性を求め、地球環境保全、資源エネルギーの有 効利用、社会資本の充実、地域の活性化等幅広く社会開発型システム関連のテーマを選定 し、産学連携のもと、当協会の研究開発企画委員会に技術テーマ別研究会等を設置して、 調査研究を推進しております。

本事業は、この研究開発企画委員会の活動の一環として、学識経験者及び関連の専門家 からなる研究会(委員長: 興水 肇 明治大学 教授)を編成し、調査研究を実施したも のであります。なお、本調査のとりまとめに当たっては、株式会社竹中工務店が中心とな って行いました。

この事業にご協力いただいた関係各位に対し心から謝意を表するとともに、本報告書の 成果が各方面で有効に活用されることを切望する次第です。

平成23年3月

財団法人エンジニアリング振興協会会長増田信行

路面緑化システム研究会

委員名簿

委員会

委員長	輿水	肇	明治大学 農学部 緑地工学研究室 教授
委員	原田	鎮郎	(株)環境システム研究所 代表取締役
	横山	仁	(財)東京都環境整備公社 東京都環境科学研究所 主任研究員
	岡田	一孝	(株)竹中土木 常務執行役員 技術生産本部長
	三浦	克	(株)竹中道路 取締役社長
	坂井	剛太郎	(株)朝日興産 取締役社長
	日野林	譲二	大日本プラスチックス(株) 営業本部 商品開発部 部長
	佐藤	充彦	日本植生(株) 環境緑化部 係長
	米澤	敏男	(株)竹中工務店 技術研究所 リサーチフェロー
事務局	大野	宣夫	(財)エンジニアリング振興協会 技術部 部長
事務局	石瀬	俊明	(財)エンジニアリング振興協会 技術部 研究主幹

作業部会

部会長	米澤	敏男	(株)竹中工務店	技術研究所	リサーチフェロー
委員	佐久間	訂 護	(株)竹中工務店	技術研究所	
	三坂	育正	(株)竹中工務店	技術研究所	
	小島	倫直	(株)竹中工務店	技術研究所	
	安藤	慎一郎	(株)竹中土木	技術研究所	
	村谷	優	(株)竹中土木	技術研究所	
	金子	みゆき	(株)竹中土木	技術研究所	
	関	繭果	(株)竹中土木	技術研究所	
	若林	伸介	(株)竹中道路	技術研究所	

目 次

序 委員会 · 作業部会名簿

目次

はじめに

1)	背景	. 1
2)	目的	. 2
3)	調査研究の内容	. 2

第1章 施工技術・適用環境に関する実証実験

1.1 ポー	ーラスコンクリートの保水性向上に関する実験	. 4
1.1.1	保水性向上のための材料設計	. 4
1.1.2	保水性粗骨材	. 5
1.1.3	バインダの通水性向上に関する検討	. 6
1.1.4	ポーラスコンクリート	10
1.2 路直	面緑化システムの植物生育要因効果把握実験	14
1.2.1	実験概要	14
1.2.2	実験スケジュールと評価方法	15
1.2.3	実験の結果と考察	18
1.3 芝生	生の耐乾燥性要因効果把握実験	21
1.3.1	実験概要	21
1.3.2	実験スケジュールと評価方法	24
1.3.3	実験結果と考察	26
1.3.4	参考資料	32
1.4 セク	ダム緑化の生育主効果の把握に関する実験	42
1.4.1	実験概要	42
1.4.2	実験結果	43
1.4.3	最適水準と現行条件の比較	44
1.5 路百	面緑化の景観評価	46
1.5.1	研究の視点	46
1.5.2	事例収集および考察	46

第2章 路面緑化システムの耐久性評価

2.1	路面	面緑化システムのアイディアと試験施工	52
2.1	1.1	路面緑化システムの検討	52
2.1	1.2	システム構成	53
2.1	1.3	試験施工	55

2.2 路面	面緑化システムのタイヤ走行試験	59
2.2.1	実験概要	59
2.2.2	路面緑化試験体の施工状況	60
2.2.3	耐踏圧実証試験と評価	63
2.2.4	実験の結果と考察	64
2.3 路面	面緑化ユニットの小型 FWD 評価と FEM 解析	66
2.3.1	路面緑化ユニットの小型 FWD 評価	66
2.3.2	路面緑化ユニットおよび支柱材の選定	68
2.3.3	路面緑化ユニットの構造検討	71

第3章 維持管理システムの検討

3.1 水	分監視システムの検討	119
3.1.1	造園植物の水要求量	119
3.1.2	計算例	120
3.1.3	路面緑化ユニットの必要水量の算定	
3.1.4	植栽地の水分管理方法	
3.2 排;	水再利用技術の検討	126
3.2.1	建物からの排水再利用	126
3.3 太	陽光エネルギー利用技術の検討	130
3.3.1	高精度太陽方位追尾装置(1 軸追尾装置)	130
3.3.2	1 軸であることの損失について	131
3.3.3	利用イメージ	

第4章 路面緑化適用ガイドライン

4.1 路前	面緑化の主な効果	
4.1.1	路面緑化とは	137
4.1.2	路面緑化の計画	
4.1.3	路面緑化の設計	
4.1.4	路面緑化の施工	
4.1.5	維持管理	

はじめに

環境の世紀と言われている 21 世紀は、言い換えれば不安の世紀でもある。環境悪化や 温暖化が進み、資源は枯渇し、人口は増え続け、人類は生き延びることができないのでは ないかという警告を突き付けられてきた。その結果、少しでも他の人々より長く生き残ろ うとする発想から、キャップアンドトレードによる操作、資源保護のためのグローバルな 保護規制や、生物多様性維持のための遺伝子の金融商品化が始まっている。その争いや競 い合いは地球を超えて拡がるのであろうか、映画 AVATAR のように。

たとえ人類の生存領域が他の銀河系へ広がろうとも、この地球で生きていこうとする 人々は、地球上の他の生物と共生するライフスタイルをとらねば生きていけないことを知 っている。衣食住のすべてを他の生物の恵みに依存してきたし、これからも依存しなけれ ばならないからである。地球上では、氷河期から間氷期、そして温暖期の間を繰り返しな がら、さまざまな生き物が存在してきた。その間に絶滅したものもあれば、新たに発生し たものもある。人類もその一つである。人類は地球上の他の生物群の一員として生きてき たことをいま再確認したい。

人類は、生物群の営み、すなわち生態系からの恵みにより生かされているのである。生 きることはまず行動することであり、行動とは歩くことから始まり、歩く足元には他の生 物も生きている。そうした生物を踏みしめながら歩いているのが人類である。生物の中に は、歩くことにより、その後に生物を残さない、すなわち歩いた後を裸地にしてしまうも のも存在する。地球のあやうい未来に気付き始めている人類は、その叡智を結集して生態 系への致命的なダメージを与えないような方向すなわちエコロジカルフットプリントを最 小にするよう、すべての行動をシフトすることが求められている。

地表を不透水面へと変えることによって得られる快適性は部分的、一時的なものである。 不透水面積が増大することにより、地表面の放射温度が上昇し、蒸発が抑制され大気の高 温化を助長するため、生活環境は快適なものにならない。不透水面を増大させてきた現代 都市の、全体の最適化を損なう部分の最適化しか行ってこなかった典型例である。アスフ ァルト舗装より芝舗装の駐車場のほうが景観的には好ましい。降雨時には歩きにくい、車 内が汚れるからとより安易で維持管理の楽なハードな舗装を採用してきた。部分の最適化 しか考えないレベルの低い選択としか言いようがない。冒頭で地球環境と人類の生存とい う大きく重い課題を提示したのは、判断のレベルをもう少し高くしたいという願いからで ある。知恵と技術と経費をかける部分を、今までとは違う部分にシフトすべきだというこ とである。耐久性があり、維持管理が容易で、高価ではない芝舗装を開発し、人々の生活 をより快適なものにしようというのが、本調査研究の目的である。

1) 背景

都市化の進行に伴うヒートアイランド現象は関心の高い環境問題であり、「ヒートアイ ランド対策大綱」(平成16年度策定)を踏まえて、国や自治体を挙げて総合的な対策を推進 している。自治体や事業者の取り組みの一つとして「駐車場の舗装改善」ある。しかしな がら、駐車場の緑化は、耐久性や芝生の管理などの技術的な課題が解決されておらず、長 期間にわたり健全な状況で維持している事例はほとんど無い状況にある。(兵庫県「グラス パーキング推進事業」実証実験H17年度~H18年度)

また、工場や倉庫の建替え計画は多いが、工場立地法適用以前の建物は建替えに伴う緑 地面積確保がネックとなり、郊外移転があとを絶たない。2004年3月の工場立地法改正に 伴い、東京都は屋上と壁面緑化を緑地面積に算定可能としたが、工場屋根特有のスレート や折半の荷重制限や壁面緑化の技術的な困難さのために、行政的な後押しにも関わらず緑 化面積は増加していない。路面の緑化が緑地面積に算定可能と判断されると、工場の建替 え需要に大きく貢献すると考えられる。当社が横浜市において、緑化コンクリートを用い た車両搬出入路の緑化を提案し、緑地面積算定の有無を判断して頂いたところOKを頂い た経緯がある。路面緑化のニーズは大きい。

市街地の歩道は夏季高温になり、老人・子供・妊婦・身障者などの社会的弱者に過酷 な歩行環境を強いる状況となっている。歩行環境としては電柱と共存する街路樹は棒 状に刈り込まれ、緑陰をほとんど提供できていない。人々は建物の影を選んで歩行せ ざるを得ない状況となっている。路面の熱負荷低減は都市環境における社会的弱者保 護上の急務の課題となっている。歩道の緑化は人々の暮らしに直接貢献する都市環境 改善のニーズとなっている。

本年2月に、緑化コンクリートを用いた軌道敷緑化施工を広島県で実施した。路面電車 は、全国18都市19事業者、路線延長約235kmで営業されている。全国19箇所の路面電 車のうち、広島、大津、高知、鹿児島の4都市で実績があるが、いずれも短い区間で試験 的に行われている状況。良好な視環境の形成と熱負荷低減も視野に入れた軌道敷緑化は今 後増加することが予想される。

2) 目的

夏季の炎天下の路面は、60℃を超える表面温度となるが、植栽面はどんなに温度が上が っても40℃を超えることは無い。暑い日中は植物体自身を冷やす目的もあり、活発な蒸 散作用を行うが、冬季はもちろん曇天や雨天時はほとんど蒸散せず、大気中の温度と水分 を自動調節してくれる。この植物の持つ環境調節機能を路面で活用するため、竹中工務店 で開発した緑化コンクリートを用いて、環境負荷の低減と(雨水の灌水利用、アスファル ト舗装面の熱負荷低減等)、良好な街並み景観の創出を目的に、路面(歩道、街路、駐車場、 軌道敷、緊急車両進入路など)で地被植物が健全に生育する緑化システムを開発するための 調査研究を行う。

調査研究の内容

21 年度の主な調査研究の内容

- (1) 路面緑化の実態調査
 - ① 文献調査、ヒアリングの実施
 - ② 開発商品の植物生育状況、水利用の実態、障害発生の実態
- (2) 路面緑化のシステム化(緑化コンクリート適用)に関する各種実験・評価

- ① 緑化基盤諸物性評価(物理性、化学性)
- ② 種センサーを用いた最適灌水システムの検討
- ③ 水分状態監視システムの調査・検討
- ④ 踏圧(+歩行のしやすさ)及び輪荷重(タイヤ圧)に耐え、植物の生長点を保護す る機構の開発
- (3) 路面緑化の概念設計
 - 歩道や車両進入路で地被植物が健全に育成するための路面緑化工法の各種目標値 設定と概念設計。
- 22年度の主な調査研究の内容
- (1) 施工技術・適用環境に関する実証試験
 - ① ポーラスコンクリートの保水性向上に関する実験
 - ② 適用植物の生育適性評価実験
 - ③ 路面緑化の景観評価
- (2)路面緑化システムの耐久性評価
 - ①路面緑化システムのアイディアと試験施工
 - ②タイヤ走行試験
 - ③路面緑化ユニットのFWD評価とFEM解析
- (3)維持管理システムの検討
 - ①水分管理システムの検討
 - ②排水再利用技術の検討
 - ③太陽光発電利用技術の検討
- (4) 適用ガイドラインの策定

第1章 施工技術・適用環境に関する実証実験

1.1 ポーラスコンクリートの保水性向上に関する実験

路面緑化の基盤の一つとして,竹中グループの保有技術である「緑化コンクリート」が検討されているが,本節では,その保水性をさらに向上させることを目的として 新しい材料を用いて検討を行った。

1.1.1 保水性向上のための材料設計

ポーラスコンクリートは、単粒度粗骨材を少量の高強度・低アルカリのセメントペ ースト(またはモルタル)によって固結したもので、連続した空隙を有している。

ポーラスコンクリートの保水性をさらに向上させるため,表1.1.1-1に示すような材料設計で検討を行った。材料設計の概念は、コンクリート体積のおよそ半分を占める 粗骨材に水分を保持させることに着目し、「グリーンビズTM」と呼ばれる吸水性の高 い特殊な材料を使用することとした。それと同時に、粗骨材に保持されている水分が、 ポーラスコンクリート内の充填材(保水材)に滲出できるように、バインダとなるモ ルタルに可溶性繊維を混合し、繊維を溶解して微細な空隙を作ることで通水性を高め ることとする。

	ー般的な ポーラスコンクリート	保水性向上を目指した ポーラスコンクリート
模式図		
保水の分担	保水材	保水性骨材 + 保水材
(1)骨材	砕石 (JIS規格:吸水率 3%以下)	グリーンビズ端材 (吸水率実測 30%程度)
(2)バインダ (モルタル)	低通水性(透水性)	繊維の溶解を利用して 微細空隙を作り, 通水性を高める

表1.1.1-1 設計概念

1.1.2 保水性粗骨材

1) グリーンビズについて

本実験では、保水性粗骨材として小松精練株式会社の「グリーンビズ」の端材を使 用する。グリーンビズは、繊維の染色排水を浄化する過程で発生する余剰バイオマス ケイク(微生物を含んだ泥土)を、珪藻土や粘土と混ぜ合わせて1,000℃以上の高温で 焼き上げて製造される超微多孔スポンジ状のセラミックス基盤である1)。スポンジ状 の構造のため、吸水性や保水性にすぐれ、屋上緑化や壁面緑化の基盤として利用され ている。

本実験で使用するグリーンビズの端材および商品化されているグリーンビズを図1. 1.2-1および図1.1.2-2に示す。

図 1.1.2-1 保水性粗骨材 (グリーンビズ端材)

図 1.1.2-2 グリーンビズ

2) 骨材試験

コンクリートの配合設計に必要なデータを取得するため、保水性粗骨材の単位容積 質量、実積率、密度、吸水率の測定およびふるい分け試験を行った。粗骨材は、公称 目開き4.75mmの金属製網ふるいにとどまるものを使用した。

試験結果を表1.1.2-1および表1.1.2-2に示す。吸水率については、商品化されているグリーンビズで50%以上であるが、今回使用する粗骨材は材料の端部であるために30

%となっている。また、ふるい分け試験結果より、骨材粒度は、JIS A 5005-1993 コ ンクリート用砕石の2005区分に規定されている粒度であることが確認された。

試験名	保水性粗骨材 グリーンビズ	コンクリート用砕石 規格 (JIS A 5005:1993)	試験方法
単位容積質量	0.61 kg/l	-	US A 1104-2006
実積率	49.3 %	55以上	JIS A 1104:2000
表面乾燥状態における密度	$1.64 ext{ g/cm}^3$	_	
絶対乾燥状態における密度	$1.23 ext{ g/cm}^3$	2.5以上	JIS A 1110:2006
吸水率	33.06 %	3.0以下	

表 1.1.2-1 骨材試験結果

表 1.1.2-2 骨材のふるい分け試験結果

		ふるいを通るものの質量分率 %						粗粒率
	40 mm	25 mm	20 mm	15 mm	10 mm	5 mm	2.5 mm	
保水性粗骨材 (グリーンビズ)	100	98	93	33	1	0	-	6.68
JIS コンクリート用 砕石2505 規格値	100	95~100	_	30~70	_	0~10	0~5	_

1.1.3 バインダの通水性向上に関する検討

ポーラスコンクリートのバインダとなるモルタル部の通水性向上を目的として,可 溶性繊維を添加したモルタル供試体を用いて,含水率試験および圧縮強度試験を行っ た。

試料および供試体

表1.1.3-1の使用材料および,表1.1.3-2の配合で,試料を作製した。配合は,ポー ラスコンクリートのモルタル部分の配合を基準として,可溶性繊維をモルタル体積の1 .0%から3.5%の範囲で外割添加した。供試体は,含水率試験用に4cm×4cm×10cmの角柱 供試体を3本,圧縮強度試験用にφ5cm×10cmの円柱供試体を3本作製した。

繊維は、水に浸漬してから14日間程度で分解するため、供試体は28日間水中養生した。

表 1.1.3-1 使用材料

種類	名称	物 性
セメント	高炉B種セメント	密度:3.04 g/cm3
細骨材	大井川陸砂	表乾密度: 2.57 g/cm3, 吸水率 1.68%
混和剤	高性能AE減水剤	密度:1.09 g/cm3
繊維	可溶性繊維	密度:1.27 g/cm3

表 1.1.3-2 配合

配合	水	セメント	細骨材	繊維添加量	繊維添加率
ケース	kg	kg	kg	g	モルダル体積 外割添加
No.1				0	なし
No.2			1.682	32	1.0 %
No.3				48	1.5 %
No.4	0.796	3.187		64	2.0 %
No.5				79	2.5 %
No.6	No.6			95	3.0 %
No.7	No.7			111	3.5 %

2) 試験方法

E縮強度試験は、土木学会規準JSCE-G 505-1999「円柱供試体を用いたモルタルまた はセメントペーストの圧縮強度試験方法」に準拠して材齢28日において試験を行った。

含水率試験は、水中養生後の湿潤重量と、空気循環式乾燥炉(温度105~110℃)で 乾燥させた状態における絶乾重量とを測定して重量含水率を算出した。

3) 試験結果

図1.1.3-1に材齢28日における圧縮強度と重量含水率の結果を示す。繊維を添加していない配合では、含水率は6%であったのに対し、繊維の添加量を増やすことによって含水率が増加する傾向が見られ、繊維を3.5%添加したケースでは、含水率が10%程度となった。

一方,繊維添加に伴う強度の低減も著しく,繊維2.0%添加したケースでは強度65N/mm2程度の強度を発現したものの,繊維添加率が2.5%以上になると繊維の膨潤によって供試体が膨張してひび割れが入り(図1.1.3-2),ほとんど強度を発現しない結果となった。

材齢28日における供試体の断面を図1.1.3-3に示す。繊維添加率2.0%以上の供試体断

面では白い斑点が見られ、繊維が溶解せずに残っていることが確認できる。繊維添加率1.5%の供試体断面では、白い斑点は多く見られない。このケースでは含水率が7.3% で繊維添加率2.0%のケースよりも高い値を示していることから、全ての繊維が溶解できる適切な添加率で配合設計することにより、モルタルの透水性を高めることが可能であると考えられる。

図 1.1.3-1 圧縮強度(材齢 28 日)および含水率

繊維添加率 2.5%

繊維添加率 3.0%

図 1.1.3-2 膨潤によってひび割れた供試体

With the second seco	With the second seco	<i>截</i> 維1.5%
减 維2.0%	藏維2.5% 截着2.5%	藏維3.0% 截着3.0%

図 1.1.3-3 供試体断面

1.1.4 ポーラスコンクリート

保水性骨材(グリーンビズ端材)と可溶性繊維を添加したモルタルを用いたポー ラスコンクリートを作製し、空隙率、保水率および圧縮強度の測定を行った。

1) 試料および供試体

試料は、1.1.2「保水性粗骨材」および1.1.3「バインダの通水性向上に関する検討」で用いた材料を使用し、**表**1.1.4-1に示す配合で作製した。配合において、粗骨材 容積率は骨材試験結果で得られた実積率49.3%に補正係数 $\alpha = 0.98$ を乗じて48.3%とした。この補正係数 α は、粗骨材周囲に付着したバインダによって粒子間距離が広がる ことを考慮して用いられる係数で、JCI委員会報告1)では一般な α の値として0.95~0.98が示されている。

練り混ぜは、50リットルのパン型ミキサに粗骨材を投入し、あらかじめ繊維と混 ぜ合わせておいたセメントと細骨材を入れて30秒空練りし、その後、水と高性能AE減 水剤を加えて4分練り混ぜた。

供試体は、10cm×20cmの円柱供試体とし、 2層に分けて試料を打設し、各層ごと に振動台式振動機にて10秒間の振動を与えて作製した。脱型後は水中にて養生を行った。

	0.40	判例な	n h likh 공공	j	単位量	(kg/m^3))		高性能	
W/C	S/C	容積率	空原举			_	_	臧 維添加率	AE減水剤	
(%)	(%)	(%)	(%)	W	С	S	G	(モルタル体積×%)	(C×%)	
25	50	48.3 (49.3% × 0.98)	20	103	410	205	792	1.5	1.5	

表 1.1.4-1 ポーラスコンクリート配合

2) 試験方法

空隙率および保水率は図1.1.4-1に示す手順に従って測定した。空隙率の測定は,JC I委員会報告²⁾に準拠して全空隙率と連続空隙率を測定した。ここに,全空隙率とは, 「供試体体積に占める全ての空隙の割合。連続空隙と独立空隙の和として計算される。 独立空隙とは,供試体表面からみて,独立している空隙であり,水で飽水,排水する には若干の時間を要する空隙。」と定義される。また連続空隙率は,「供試体全体の 体積に占める,連続空隙の割合。連続空隙は供試体表面からみて連続している空隙で あり,容易に水で飽水,排水される空隙。」と定義される。

また, JIS A 1108:2006「コンクリートの圧縮強度試験方法」に準拠して材齢28日 における圧縮強度を測定した。

図 1.1.4-1 空隙率・保水率の測定フロー

3) 試験結果

ポーラスコンクリートの供試体の写真を図1.1.4-2,試験結果を表1.1.4-2に示す。

E縮強度は9.51N/mm2で、目標値10N/mm2には達しなかった。5号砕石または6号砕石 を用いた一般的なポーラスコンクリートでは、空隙率25%での圧縮強度が11~18N/mm2 程度であることから、保水性骨材を用いたポーラスコンクリートでは強度が若干低下 する結果となった。

全空隙率は24.5%で,設計空隙率20%よりも大きい値となった。これは,保水性骨材の表面に凹凸があり,その内部にモルタルが入り込むことによって,見かけのモルタル体積が減少したためと考えられる。

含水率は、重量基準で5.9%、体積基準で8.2%であった。同じ繊維添加率1.5%のモル タル実験における含水率(重量)が6.8%であったのに対し、ポーラスコンクリートで は含水率が低下する結果となった。このことから、今回の実験では、保水性の高い骨 材を用いたものの、モルタルで骨材の周囲を覆ったことにより通水性が低下し、ポー ラスコンクリートとしての保水性を高めることができなかったと考えられる。

図 1.1.4-2 ポーラスコンクリート供試体

試 験 名	圧縮	強度	全	空隙率	δA _t	連続空隙		連続空隙率A。 含水率(重量)		量)	含水率(体積)			
結 果	9.51 (N/mm ²)		24.5 (vol%)		22.8 (vol%)			5.9 (%)	8.2 (%)				
測 定 値	9.85 8.2	22 10.5	26.1	22.6	24.7	24.4	20.3	23.6	6.2	5.5	6.0	8.4	7.8	8.3

表 1.1.4-2 ポーラスコンクリート試験結果

参考文献

- 小松精練株式会社 HP:グリーンビズ製品特長 http://www.komatsuseiren.co.jp/greenbiz/feature/index.html
- 2) 日本コンクリート工学協会:ポーラスコンクリートの設計・施工法の確立に関する研究 委員会報告書, 2003

1.2 路面緑化システムの植物生育要因効果把握実験

1.2.1 実験概要

実験の目的

本実験では人と車が植物で覆われた路面を行き交う条件下で、植物の健全生育が可能 となる路面緑化システムの構成要因の主効果を把握することを目的とした。

2) 実験に用いる要因と水準

実験に用いる要因と水準を以下のように設定した。

実施する現行条件は、下層路盤にポーラスコンクリートを厚み 15cm で打設し、中に充 てん材を流し込み、芝生保護材を設置の後、客土を芝生保護材天端の 2cm 下がりで敷設 し、その上に張り芝し、ローラー転圧して完成するものである。

適用する直交表は5つの要因が各4水準で割付可能なL₁₆(4⁵)実験に用いる。要因と 水準は、現行の条件を基準に、技術者の固有技術から以下のように設定した。なお、現 行条件では歩行のしやすさは考慮していない。

<u>A灌水頻度</u>:月曜日に1回、月·木曜日に1回、月·水·金曜日に1回、降雨のみ

<u>B薄層客土</u>:赤土黒土混合、培養土、混合土+吸水性樹脂、培養土+吸水性樹脂

C芝保護材:保護材(正置)、保護材(逆置)、ポーラスコンクリート、保護材なし

<u>Dポラコン材・厚:</u>5 号砕石 10cm 厚,5 号砕石 15cm 厚,6 号砕石 10cm 厚,6 号砕石 15cm 厚 E 下層基盤:路盤砕石、保水排水マット (EPS 製)、黒土、フェルト

要因		水 準								
A灌水頻度	A1 月曜日	A2月·木曜日	A3月・水・金曜日	A4 降雨のみ						
B薄層客土	B1	B2	B3	B4						
	赤土黒土混合	培養土	混合土+吸水性樹脂	培養土+吸水性樹脂						
C芝保護材	C1	C2	C3	C4						
	保護材(正置)	保護材(逆置)	ホ゜ーラスコンクリート	保護材なし						
Dポラコン材・厚	D1	D2	D3	D4						
	5 号 10cm 厚	5 号 15cm 厚	6 号 10cm 厚	6 号 15cm 厚						
E下層基盤	E1 砕石	E2保水排水マット	E3 黒土	E4フェルト						

表 2.2.1-1 実験の要因と水準

固定要因: 芝種類(3種類混合 T.F、K.B、P.L 10g/m²)

:灌水量 50/m²·日

No	灌水頻度	薄層客土	芝保護材	ポラコン材・厚	下層基盤	特性値
	(5ℓ/m ² ・日)	(厚み 7cm)	(厚み 7cm)	(厚み 15cm)	(厚み 15cm)	(植被率)
1	月曜日	赤·黒土混合	保護材(正置)	5 号 10cm 厚	砕石	
2	月曜日	培養土	保護材(逆置)	5号15cm厚	保水排水マット	
3	月曜日	混合土+吸水性 樹脂	ホ [°] ーラスコンクリート	6号10cm厚	黒土	
4	月曜日	培養土+吸水性 樹脂	保護材なし	6号 15cm 厚	フェルト	
5	月·木曜日	赤·黒土混合	保護材(逆置)	6 号 10cm 厚	フェルト	
6	月·木曜日	培養土	保護材(正置)	6 号 15cm 厚	黒土	
7	月·木曜日	混合土+吸水性 樹脂	保護材なし	5 号 10cm 厚	保水排水マット	
8	月·木曜日	培養土+吸水性 樹脂	ホ゜ーラスコンクリート	5 号 15cm 厚	砕石	
9	月・水・金	赤·黒土混合	ホ゜ーラスコンクリート	6 号 15cm 厚	保水排水マット	
10	月・水・金	培養土	保護材なし	6 号 10cm 厚	砕石	
11	月・水・金	混合土+吸水性 樹脂	保護材(正置)	5 号 15cm 厚	フェルト	
12	月・水・金	培養土+吸水性 樹脂	保護材(逆置)	5 号 10cm 厚	黒土	
13	降雨のみ	赤·黒土混合	保護材なし	5 号 15cm 厚	黒土	
14	降雨のみ	培養土	ホ゜ーラスコンクリート	5 号 10cm 厚	フェルト	
15	降雨のみ	混合土+吸水性 樹脂	保護材(逆置)	6 号 15cm 厚	砕石	
16	降雨のみ	培養土+吸水性 樹脂	保護材(正置)	6号10cm厚	保水排水マット	

表 2.2.1-2 因子と水準の割り付け:直交表 L₁₆(4⁵)

3) 調查項目

生育状態の調査は月末に実施する。目視で状況を確認すると同時に、拡大可能なモー ドでカメラ撮影を行う。解析の特性値は植被率とする。月末評価を継続することで、要 因効果の時間軸における変化を確認した。

4) 試験体製作方法

①型枠内に排水シートを敷設する
 ②路盤材各種を所定厚さで充填する
 ③ポーラスコンクリート2種類を所定の厚さで打設する
 ④充填材を流し込む
 ⑤芝保護材の敷設
 ⑥客土材充填
 ⑦芝生種子3種混合 10g/m²相当播種+目土

1.2.2 実験スケジュールと評価方法

実験のスケジュール 実験の概略スケジュールを表 1.2.2-1 に示す。

	2009 年			2010 年					
実施項目	11 月	12 月	1月	2 月	3月	4月	5月	6月	
試験体 (試験)	之 】 】 】 】 】	 水・養生 					│ 評価 │ ▼ ↓	Ļ
植栽実験 植栽養生 植被率調査		植素	支験・養	生 直交剥	$E L_{16}(4^5)$				

表 1.2.2-1 実験のスケジュール

ポーラスコンクリートの製作

試験 16 区画(繰返3回)

打設後の養生開始

サンプル採取

5号砕石区打設

播種一ヶ月後の状況1

空隙率の測定

6号砕石区打設

播種一ヶ月後の状況 2

2) 芝生の評価

生育した芝生には、段階的な評価を実施する。今回実験に用いた芝草種は寒地型 芝の3種混合であるため、冬期の生育が期待されたが寒さが厳しく思うような生育 状況を示さなかった。そこで、試験開始から十分に生育した後に現れる変化を評価 対象にした。評価は播種6ヶ月後に試験体ごとに行った。

3) 試験体の断面構成

16パターンの試験体断面図を以下に示す。

NO.16 降雨のみ 培養土+吸水性 樹脂 芝保護材(正) 6号10cm厚 保水排水マット

1.2.3 実験の結果と考察

1) 実験の結果と考察

芝生の生育評価は種子の発芽後6カ月間経過したものについて行った。芝生保護構造 の芝生の生育に関する要因を評価する実験を行った結果である。解析の特性値は生育し た芝生の生育量(刈取生体重量)とした。写真は播種後6カ月目の芝生の生育状況を示し ている。写真は毎月末に撮影した。試験区ごとに芝生の生育状況が異なる様子が判る。 写1.2.3-1に実験に用いた芝生の生育状況を示す。

写真 1.2.3-1 芝生の生育経過

今回の実験結果に供した芝生の生育事例を写真 1.2.3-3 に示す。試験体設置段階では 播種直後であり試験体表面の素材がむき出しであるが、6 ヶ月の生育期間で生長した葉 により表面は被覆されることが分かった。最も生育旺盛な試験区は過繁茂の状況を呈し ているが、生育のよくない試験区は芝生面を構成していない。芝生保護材の太いメッシ ュも旺盛な芝生の生育ですぐに見えなくなってしまう。(写真 1.2.3-7 参照)

写真 1.2.3-2 2009 年 12 月試験体設置

写真 1.2.3-4 旺盛な生育状況を示す試験区

写真 1.2.3-6 発芽直後の試験区

写真 1.2.3-3 2010 年 5 月試験体の状況

写真 1.2.3-5 貧弱な生育状況の試験区

写真 1.2.3-7 保護材が隠れた試験区

2) 分散分析の結果

ここでは 6 カ月間の生育後、刈取生体重量の結果を用いた DOE 解析結果を示す。 寄与率は、R²=70.01%でこの特性値の動きをよく説明していることがわかる。 誤差の標準偏差は、 σ_e =57.6718 で、解析に用いた因子の効果を取り除いたときに、 特性値が 1 σ = 7.6718 のばらつきを持っていることを示す。

回帰統計									
重相関係数R	0.8367								
寄与率 R ²	0.7001								
誤差の標準偏差	57.6718								
観測数	48								
有効反復数	3								

表1.2.3-1の分散比(F値)を見ると、因子の灌水頻度、芝保護材及びポラコン材厚み は有意であるが、薄層客土と下層基盤は有意ではない。芝保護材(水準に保護材無及 びポラコンがある)の要因の効果が極めて大きい。次いで灌水頻度となる。薄層の客 土でも灌水を十分行えば芝は良く生育することが考えられる。

表 1.2.3-1 分散分析

検定の危険率 α = 0.20

項目名称	自由度	平方和	分散	分散比	検定有意 F	判定結果
因子効果	15	248426.122	16561. 741	4.979	1.414	
灌水頻度	3	48106.011	16035. 337	4.821	1.638	有意である
薄層客土	3	4969.152	1656.384	0.498	1.638	有意でない
芝保護材	3	161742.029	53914.010	16.210	1.638	有意である
ポラコン材・厚	3	21457.208	7152.403	2.150	1.638	有意である
下層基盤	3	12151.721	4050.574	1.218	1.638	有意でない
誤差	32	106433.111	3326.035			
全体	47	354859.232				

1.3 芝生の耐乾燥性要因効果把握実験

節水管理には、様々なアイディアが創出され、実際に植物を育てることでその効果を検証している。農業、屋上緑化、舗道緑化などでの研究事例がある。論文検索のキーワードを、灌水×システム×節水で行い23件が確認された。節水の方式をいくつか紹介する。

農業においては、水資源の有効活用のため灌漑水量の低減を図る目的で研究されている。 センサーを用いた自動灌水による節水方式が多く、灌水にドリップ式を用いるものや、

超低流速灌水及びフィルムマルチ栽培による節水、また用水計画での節水などがある。 従来の点滴灌水量 23 %/hr に対して、低流速灌水は 2.5 %/hr とし、これにソーラーポ ンプによる間欠式自動灌水を用いて総灌水量、施肥量の削減を果たしたもの、さらに 200

ミリミン/hrの超低流速灌水でその効果を確認した研究 6)7)がある。 屋上緑化では、センサーを用いた節水管理のほか、雨水を一次貯留して洪水調節と節水 に寄与する仕組みが考案され、検証されている 4)8)。

路面の緑化では、地中の導水シートを用いた節水がある 1)。

我々は、路面緑化に用いられる植物の耐乾燥性と土壌水分の動態特性を考慮した節水方 式を考案すべく、下記の実験を計画している。植物の耐乾燥性に関する最適な水準が把握 され、これに自動灌水システムを組み込むことで従来にない節水型の路面緑化システムが 構築できるものと期待し、以下の検討を行った。

1.3.1 実験概要

1) 生育要因効果把握実験

本研究は芝草3種類の耐乾燥性に関して行った実験である。駐車場という適用対象の 環境条件は多様であるが、芝草の耐乾燥性に関する実験すべき内容は主に、用土の種類、 用土の厚み、保水性の確保などの要因とその効果を把握することにある。その他の生育 に及ぼす影響である日当たりや日陰といった日照条件の違いが及ぼす影響、また風環境 や車両走行や踏圧の影響はこの場合実験に与える影響とは考えない。 実験により抽出する内容は、以下の2種類である。

②芝草の耐乾燥性に関する植栽基盤条件の要因効果を把握

②植栽基盤の保水量増加と薄層化が生育に与える影響を把握

実験の目的

芝草を用いた緑化工法は、さまざま な適用対象・部位において用いられ、 芝は異なった環境で様々な生育状態を 示している。そこで、水分環境が厳し い場所で芝生が健全に生育するための 主な要因とその効果の大きさを見出す 実験を行い、実験結果を今後の路面緑 化工法に役立てることにする。

- (2) 実験の内容
 - a 試験体

鹿児島県で生産する芝草3種類を、千葉県印西市にある実験場所に持ち込み、ワグ ネルポット(1/2000a)に生育させる。(図 1.3.1-1 参照)実験に用いる植物は、造園 利用に供するノシバ、コウライシバ及びヒメコウライシバとする。

b 調查項目

生育状態の調査は月末に実施する。目視で状況を確認すると同時に、拡大可能なモ ードでカメラ撮影を行う。さらにサーモカメラによる撮影評価も実施する。

- (3) 実験の要因と水準
 - a 実験の因子と水準および組み合わせ

実験に取り上げた要因と水準は以下の通りである。用土の種類、用土の厚さ、灌水の頻度、及び芝草の種類を要因として取り上げた。ただし、芝草の種類は直交表の外側に割り付けた。各々3水準とした。表 1.3.1-1 に直交表 L₉(34)に割り付けた実験の指示書を示す。

A用土種類 : A1 火山砂利系人工土壌、A2 パーライト系人工土壌、A3焼き黒土
B用土厚さ : B1 7 cm、B2 14cm、B3 21cm
C灌水頻度 : C1 7日に1度 C2 14日に1度 C3 灌水無し
D保水容器 : D1 シャーレφ10cm、D2 シャーレφ15cm、保水容器無し
外側割付因子: ノシバ、コウライシバ、ヒメコウライシバ

因子名					惈	時性値(植衫	皮率)
No	用土種類	用土厚さ	灌水頻度	保水浴器	ノシハ゛	コウライシハ゛	ヒメコウライシハ゛
1	用土A	7.0cm	1回/1週間	シャーレ φ 10cm			
2	用土A	14.0 cm	1回/2週間	シャーレ φ 15cm			
3	用土A	21.0 cm	灌水無し	保水容器無し			
4	用土B	7.0 cm	1回/2週間	保水容器無し			
5	用土B	14.0cm	灌水無し	シャーレ φ 10cm			
6	用土B	21.0 cm	1回/1週間	シャーレ φ 15c			
7	用土C	7.0 cm	灌水無し	シャーレ φ 15c			
8	用土C	14.0 cm	1回/1週間	保水容器無し			
9	用土C	21.0cm	1回/2週間	シャーレ φ 10cm			

表 1.3.1-1 因子と水準の割り付け:直交表 L_g(3⁴)

(4) 実験の方法

試験体に用いる材料と方法は以下のとおりである。

- a 用土種類について
 - 用土 A :火山砂利系人工土壌(有機質と肥料含有)
 - 用土 B :真珠岩系パーライト(微量要素含有)
 - 用土 C :黒土を焼いて有機分を除去した土壌
- b 試験体の制作方法

試験体製作過程を写真1.3.1-1~6に示す。栽培容器には、ワグネルポット(1/2000a) を用いた。深さに水準を設けるために、排水層に黒曜石系パーライトφ3-5mmを入れ、 その上に不織布を敷いた。このとき、排水層の厚みの違いが植物の生育に影響を与え ぬように、黒曜石系パーライトφ3-5mmの厚さは3cmで統一した。残りの厚み部分 はビニール袋で密閉して根の侵入生育を出来ないようにした。その上に植栽用土を設 置した。芝草3種類は、鹿児島県にて育成栽培したものをポット形状に合わせてカッ トし実験に供した。

写真 1.3.1-1 嵩上げ材の設置

写真1.3.1-2 排水層の設置

写真 1.3.1-3 不織布の設置

写真 1.3.1-3 客土の設置

写真 1.3.1-3 芝生の設置 コウライシバ

写真 1.3.1-3 全試験区 芝 3 種類

1.3.2 実験スケジュールと評価方法

実験のスケジュール
 実験の概略スケジュールを表 1.3.2-1 に示す。

		2010 年								
実施項目	1月	2 月	3月	4 月	5月	6月	7月	8月		
試験体) 本製作·副 (~ 灌 査 植非	水 ・ 養 生	水 生 直交:	、切り開め ▼ 表 L ₉ (3 ⁴)	4		評価 ▼ (

表 1.3.2-1 実験のスケジュール

* 刈込みは草丈 10cm 到達で H3cm に切戻す(頻度測定)

2) 芝生の評価

乾燥状態になった芝生には、段階的な評価を実施する。水切り試験開始後の日数で現 れる変化を、3段階で記録する。評価は試験体ごとに行うものとする。

芝の耐乾燥性を商品価値として評価する上で、葉の丸くなる順位は重要と考える。また枯死寸前の状態からの回復過程の早さも芝の耐乾燥性の重要なポイントであるが、ここでは景観性を考慮して3段階評価結果で耐乾燥性の強弱を判定する。

3) 試験体の断面構成

以下に実験に用いた試験体の断面構成を示す。

4) 用土の物理性及び化学性

以下に、実験に用いた用度ごとの物理性及び化学性分析結果を示す。 用土はいずれも実際の植栽に多量に用いられているものである。

試験項目	単位	用土A	用土 B	用土C	
三相分布:気相率	V/ V%	38.2	44.4	43.5	
三相分布:液相率	V/ V%	46.1	43.0	33.4	
三相分布:固相率	V/ V%	15.7	12.6	23.1	
粒径組成(国際法)	-				
飽和透水係数	cm/sec	$1.7 imes 10^{-2}$	$2.6 imes 10^{-2}$	$5.6 imes10^{-1}$	
有効水分(pF1.8-3.0)	l/m ³	132	252	26	
$pH(H_2O)$	-	6.0	8.0	5.7	
有効態りん酸 P ₂ O ₅	mg/kg	66	10	21	
交換性カリウム K	cmol(+)/kg	1.04	0.13	0.17	
腐植	g/kg	20.7	0.8	162	
塩基交換容量(CEC)	cmol(+)/kg	7.4	3.3	35.1	
りん酸吸収係数	g/kg	13.7	0.5	24.9	
電気伝導度(EC)	ds/m	0.23	0.02	0.06	
全窒素	g/kg	0.9	0.1	4.8	

表 1.3.2-2 用土の物理性及び化学性

5) 試験区ごとの水分保持量

試験区は9種類であるが、土壌中に保持する水分量は複雑に異なるものとなっている。 表1.3.2-3は試験区ごとの有効水分量を計算で推定した値を示している。有効水分量の 最大の試験体は4.15リットルであり、最小の試験体は0.26リットルとなっている。

因子名 No	用土種類	用土厚さ	保水容器	有効水分量推定値 ソス/ポット(1/2000a)
1	用土A	7.0cm	シャーレφ10cm	0.78
2	用土A	14.0 cm	シャーレφ10cm × 3ケ	1. 71
3	用土A	21.0 cm	保水容器無し	1.96
4	用土B	7.0 cm	保水容器無し	1. 25
5	用土B	14.0cm	シャーレφ10cm	2.63
6	用土B	21.0 cm	シャーレφ10cm × 3ケ	4. 15
7	用土C	7.0 cm	シャーレφ10cm × 3ケ	0. 49
8	用土C	14.0 cm	保水容器無し	0.26
9	用土C	21.0cm	シャーレφ10cm	0. 51

表 1.3.2-3 試験体ごとの有効水分量推定値

有効水分量の計算を以下に示す。

試験体 No.1 のワグネルポット内土壌水分量

用土A (有効水分量 132 l/m³) 厚み 7cm のワグネルポット(1/2000a)内水分量は 7/100×132=9.24 l/m² 9.24× (15×15×3.14/10000) =0.65 %/P ① ジャーレ ϕ 10cm(h=2cm)の水分量 5×5×3.14×2=157 \Rightarrow 0.157 %/P ただし、三相分布:固相率 15.7 のためシャーレ内の水分は 0.157×0.843=0.132 %/P ② ワグネルポット内土壌の有効水分量(①+②) 0.65+0.13=0.78 %/P

1.3.3 実験結果と考察

2009 年 11 月に製作した試験体を 2010 年 8 月まで生育させ、十分生育した芝生の状態 で室内に持ち込み水切り試験に供した。

下記の写真は、試験体設置直後と十分な生育を示す7カ月後の状況である。

写真 1.3.2-1 試験体の設置

写真 1.3.2-2 試験体の生育状況

1) コウライシバの耐乾燥性

試験体は8月20日の猛暑日に室内に持ち 込み、南側に面した全面ガラスの廊下に一列 に並べた。試験体の評価は目視による健全性評 価と1週間ごとに重量測定と写真撮影を行った。 目視による生育評価は4段階で行った。健全4、 やや枯れ3、ほぼ枯れ2、枯死1とした。下記 の写真1.3.2-4は室内移動後1週間目の生育状 況あり、写真1.3.2-5は室内移動後3週間目の 生育状況である。

写真 1.3.2-3 室内移動後の状況

写真 1.3.2-4 室内移動後 1週間目の状況

写真 1.3.2-5 室内移動後 3 週間目の状況

2) 乾燥状態の評価

目視による生育評価結果を表 1.3.2-4 に示す。表中の数字は、健全 4、やや枯れ 3、 ほぼ枯れ 2、枯死 1 とした。

9 試験区で繰返し3回の実験を行っている。表1.3.2-4 は同一試験区ごとに層別して 表している。つまり、試験体1、試験体10、試験体19 は同一条件の試験体である。 最も早い段階で枯死したものは、試験体19 であり、4 日目に枯死している。最も長く健 全性が維持されたものは、試験体6で49 日目にようやく葉が萎える状況であった。試 験区全体で見ても試験区1の条件は枯死が早く現れ、試験区6の条件は最も長い期間の 健全生育が認められた。

コウライシハ	4日目状態	7日状態	10日状態	14日状態	17日状態	21日状態	25日状態	27日状態	32日状態	35日状態	45日状態	49日状態
試験体NO.	2010.08.23	2010.08.27	2010.08.30	20100904	2010.09.06	2010.09.10	2010.09.14	2010.09.16	2010.09.21	2010.09.24	2010.10.04	2010.10.08
1	4	4	4	2	1	1	1	1	1	1	1	1
10	4	2	1	1	1	1	1	1	1	1	1	1
19	1	1	1	1	1	1	1	1	1	1	1	1
2	4	4	4	4	2	2	1	1	1	1	1	1
11	4	4	4	4	4	3	2	2	1	1	1	1
20	4	4	4	2	2	1	1	1	1	1	1	1
3	4	4	4	4	4	4	2	2	2	2	1	1
12	4	4	4	4	2	2	1	1	1	1	1	1
21	4	4	4	4	4	3	2	2	2	1	1	1
4	4	4	4	2	2	1	1	1	1	1	1	1
13	4	4	4	3	3	1	1	1	1	1	1	1
22	4	4	4	3	2	1	1	1	1	1	1	1
5	4	4	4	4	4	4	4	4	1	1	1	1
14	4	4	4	4	4	4	2	2	1	1	1	1
23	4	4	4	4	4	2	2	2	1	1	1	1
6	4	4	4	4	4	4	4	4	4	4	4	3
15	4	4	4	4	4	4	2	2	2	2	1	1
24	4	4	4	4	4	3	2	2	1	1	1	1
7	4	4	2	1	1	1	1	1	1	1	1	1
16	4	4	2	1	1	1	1	1	1	1	1	1
25	4	4	4	3	2	2	2	2	2	2	2	2
8	4	4	4	3	2	2	1	1	1	1	1	1
17	4	4	4	3	2	2	1	1	1	1	1	1
26	4	4	4	3	2	2	1	1	1	1	1	1
9	4	4	4	4	3	3	2	2	2	2	2	1
18	4	4	4	4	3	3	2	2	2	2	2	1
27	4	4	4	4	3	3	2	2	2	2	2	1

表 1.3.2-4 コウライシバの室内移動後の生育評価結果
3) 土壌水分の減少量と芝枯れの状況

下図は実験条件1と実験条件3の土壌水分の減少と芝生の枯れていく状況を示す。客 土量の少ない実験条件1では2週間程度で土壌水分を使い切り、急速に枯死に至る。一 方客土の多い実験条件3には水分量が多くあるため、3週間目までは健全である。

図 1.3.2-1 耐乾燥性試験(実験条件 No.1)

図 1.3.2-2 耐乾燥性試験(実験条件 No.3)

4) データの解析

ここでは室内取り入れ後、3週間目の結果を用いた DOE 解析結果を示す。

①コウライシバの分散分析

寄与率は、R²=75.89%でこの特性値の動きをよく説明していることがわかる。 誤差の標準偏差は、 σ_e =0.6667で、解析に用いた因子の効果を取り除いたときに、特性 値が1 σ = 0.6667のばらつきを持っていることを示す。

回帰統計					
	0.8712				
寄与率 R ²	0.7589				
誤差の標準偏差	0.6667				
観測数	27				
有効反復数	3				

分散比(F値)を見ると、因子の用土種類と用土厚さは有意であるが、灌水頻度と保水容器 は有意ではない。室内取り入れ後は無灌水の状態である。この場合灌水頻度の影響は無い ものと考えられる。

分散分析表

検定の危険率 α = 0.20

項目名称	自由度	平方和	分散	分散比	検定有意 F	判定結果
因子効果	8	25.185	3.148	7.083	1.579	
用土種類	2	2.296	1.148	2.583	1.762	有意である
用土厚さ	2	20.519	10.259	23.083	1.762	有意である
灌水頻度	2	1.407	0.704	1.583	1.762	有意でない
保水容器	2	0.963	0.481	1.083	1.762	有意でない
誤差	18	8.000	0.444			
全体	26	33.185				

②ノシバの分散分析

寄与率は、R²=79.97%でこの特性値の動きをよく説明していることがわかる。 誤差の標準偏差は、 $\sigma_e = 0.5774$ で、解析に用いた因子の効果を取り除いたときに、特性 値が1 $\sigma = 0.5774$ ばらつきを持っていることを示す。

回帰統計						
重相関係数R	0.8424					
寄与率 R ²	0.7097					
誤差の標準偏差	0.5774					
観測数	27					
有効反復数	3					

分散比(F値)を見ると、因子の用土種類と用土厚さ及び灌水頻度は有意であるが、保水 容器は有意ではない。室内取り入れ後は無灌水の状態である。

項目名称	自由度	平方和	分散	分散比	検定有意 F	判定結果
因子効果	8	14.667	1.833	5.500	1.579	
用土種類	2	2.000	1.000	3.000	1.762	有意である
用土厚さ	2	10.889	5.444	16.333	1.762	有意である
灌水頻度	2	1.556	0.778	2.333	1.762	有意である
保水容器	2	0.222	0.111	0.333	1.762	有意でない
誤差	18	6.000	0.333			
全体	26	20.667				

分散分析表

③ヒメコウライシバ

寄与率は、R²=95.47%でこの特性値の動きをよく説明していることがわかる。 誤差の標準偏差は、 σ_e =0.2722で、解析に用いた因子の効果を取り除いたときに、特性 値が1 σ = 0.2722のばらつきを持っていることを示す。

回帰統計					
重相関係数 R	0.9771				
寄与率 R ²	0.9547				
誤差の標準偏差	0.2722				
観測数	27				
有効反復数	3				

分散比(F値)を見ると、因子の用土種類と用土厚さ、灌水頻度及び保水容器すべて有意 となっている。用土の厚さの効果が大きい。

項目名称	自由度	平方和	分散	分散比	検定有意 F	判定結果
因子効果	8	28.074	3.509	47.375	1.579	
用土種類	2	2.296	1.148	15.500	1.762	有意である
用土厚さ	2	24.519	12.259	165.500	1.762	有意である
灌水頻度	2	0.963	0.481	6.500	1.762	有意である
保水容器	2	0.296	0.148	2.000	1.762	有意である
誤差	18	1.333	0.074			
全体	26	29.407				

分散分析表

5) 水分量確保の工夫

植物の生育には、土壌の種類と土量が最も大きな影響を与える。土の厚さは他の要因に 比して生育効果が極めて大きい。では土中に水をためる工夫はどの程度有効なのだろうか。 写真1.3.2-6に耐乾燥性実験終了後の根系調査結果を示す。試験体内部に設置した水分保 持機能を高めるシャーレには、3種類の芝の根がいずれも密に侵入していることが判る。 これをみると保水のための工夫として、シャーレは有効に機能していることが確認できる。

写真 1.3.2-6 耐乾燥性実験終了後の根系調査

1.3.4 参考資料

以下に実験期間中の各種データを参考として提示する。

写真 1.3.2-7 室内移動初日の草丈の状況 (コウライシバ)

写真 1.3.2-8 室内放置乾燥 1 週間目の状況 (コウライシバ)

写真 1.3.2-9 室内放置乾燥 2 週間目の状況 (コウライシバ)

写真 1.3.2−10 室内放置乾燥 3 週間目の状況(コウライシバ)

写真 1.3.2-11 室内放置乾燥 4 週間目の状況 (コウライシバ)

写真 1.3.2-12 室内放置乾燥 5 週間目の状況 (コウライシバ)

写真 1.3.2-13 室内放置乾燥 7 週間目の状況 (コウライシバ) 表 1.3.2-5 芝の生育評価結果 (コウライシバ)

芝の生育評価(4:健全、3:やや枯れ、2:ほぼ枯れ、1:枯死

写真 1.3.2-14 実験条件 No1.の水分減少量 (コウライシバ)

写真 1.3.2-15 実験条件 No2.の水分減少量 (コウライシバ)

写真 1.3.2-16 実験条件 No3.の水分減少量 (コウライシバ)

写真 1.3.2-17 実験条件 No4.の水分減少量 (コウライシバ)

写真 1.3.2-18 実験条件 No5.の水分減少量 (コウライシバ)

写真 1.3.2-19 実験条件 No6.の水分減少量 (コウライシバ)

写真 1.3.2-20 実験条件 No7.の水分減少量 (コウライシバ)

写真 1.3.2-21 実験条件 No8.の水分減少量 (コウライシバ)

写真 1.3.2-22 実験条件 No9.の水分減少量 (コウライシバ)

コウライシバ

ノシバ

ヒメコウライシバ

回帰統	計	回帰統言	ł	回帰統計		
重相関係数R	0.6068	重相関係数R	0.9194	重相関係数R	0.7347	
寄与率 R ²	0.3682	寄与率 R ²	0.8453	寄与率 R ²	0.5398	
誤差の標準偏差	22.8246	誤差の標準偏差	13.8203	誤差の標準偏差	21.1555	
観測数	27	観測数	27	観測数	27	
有効反復数	3	有効反復数	3	有効反復数	3	
K	K		y,	H	H	
K	K 12	<u>%</u>	M/2	H	H IZ	
K 19	k 21	173 13	NZI	H 19	H 21	

写真 1.3.2-23 芝草 3 種類の草丈による生育要因効果の把握

1.4 セダム緑化の生育主効果の把握に関する実験

1.4.1 実験概要

多肉植物を用いた薄層緑化工法は、さまざまな適用対象・部位において、さまざまな生 育状態を示している。そこで、セダムが健全に生育するための主な要因とその効果の大き さを見出す実験を行い、実験結果を路面緑化工法に役立てることにする。

実験に用いる植物は、メキシコマンネングサとした。

(1) 試験体

ワグネルポット(1/2000a)にセダム苗を植 栽して生育させる。(右図参照)

(2) 調查項目

植被率を5月、8月、10月、2月に調査した。

図 1.4.1-1 試験体イメージ

(3) 実験内容

薄層の客土で生育するセダム類の生育要因効果を明らかにする実験を行った。解析の 特性値は生育した苗の植栽投影面積(cm²)とした。

実験に用いた因子と水準は以下のとおりである。要因として用土の種類、用土の厚 さ、灌水頻度、維持管理の4要因を取り上げた。適用する直交表は5つの要因が各4水準 で割付可能なL16(4⁵)実験に用いた。

A用土種類:A1有機無機混合土、A2火山砂利、A3機無機混合人工土壌、A4黒土
B用土厚さ:B1 2.5 cm、B2 5.0cm、B3 7.5cm、B4 10.0cm
C灌水頻度:C1 5日に1度 C2 10日に1度 C3 15日に1度 C4 灌水無し
D維持管理:D1 無し D2刈込 D3施肥 D4殺菌・殺虫

図 1.4.1-2 メキシコマンネングサの生育状況

(4) 試験区の状況

1.4.2 実験結果

ここでは3ヶ月間の生育後の結果(9月末データ)を用いた DOE 解析結果を示す。

X 1. 1.	
重相関係数R	0.9648
寄与率 R ²	0.9308
誤差の標準偏差	41.9224
観測数	32
有効反復数	2

表 1.4.2-1 回帰統計

寄与率は、R²=93.08%でこの特性値の動きを非常によく説明していることがわかる。 誤差の標準偏差は、 σ_e =41.9224 で、解析に用いた因子の効果を取り除いたときに、特 性値が1 σ =41.9224 のばらつきを持っていることを示す。

表 1.4.2-2 全体分散分析表

	平方和	自由度	分散	分散比	検定有意 F
因子効果	378262.595	15	25217.506	14.349	1.541
誤差	28119.745	16	1757.484		<i>α</i> =0.20
合計	406382.340	31			

全体の評価として分散分析表を見ると、観測されたF値が14.349で、検定基準値1.541(α =0.20)より大きいので、今回取り上げた因子は特性値の動きをよく説明していることがわかる。

項目名称	自由度	平方和	分散	分散比	検定有意 F	判定結果
因子効果	15	378262.595	25217.506	14.349	1.541	
用土種類	3	288010.098	96003.366	54.625	1.736	有意である
用土厚さ	3	62056.593	20685.531	11.770	1.736	有意である
誤差	3	5731.191	1910. 397	1.087	1.736	有意でない
灌水頻度	3	8873.883	2957.961	1.683	1.736	有意でない
維持管理	3	13590.828	4530.276	2.578	1.736	有意である
誤差	16	28119.745	1757.484			
全体	31	406382.340				

表 1.4.2-3 因子ごとの分散分析表

分散比(F値)を見ると、因子の用土種類と用土厚さ及び維持管理は有意であるが、灌水 頻度は有意ではない。維持管理は実施していないので、この場合他列の影響が出ているも のと考えられる

1.4.3 最適水準と現行条件の比較

ここで現在実施している方法と最適な組み合わせでの生育効果の比較を行ってみた。メ キシコマンネングサの生育について、土壌の厚みと土の種類が生育に重要な影響を与えて おり、現行条件にくらべて最適条件の組み合わせを選ぶと4倍の効果があることが判る。

								• •		-
因子名	水	基準係数	t 値	対比	平方和	分散	F值	数	F(0.20)	判定
	準									
定数項	β₀	69.850	2.36	143.55						
用土種類	1	0.000	0.00	-11.09	288010.098	96003.366	54.625	8	1.736	有意である
用土種類	2	-61.288	-2.92	-72.38				8		
用土種類	3	-63.700	-3.04	-74.79				8		
用土種類	4	169.350	8.08	158.26				8		
用土厚さ	1	-0.000	-0.00	-68.04	62056.593	20685.531	11.770	8	1.736	有意である
用土厚さ	2	75.988	3.63	7.95				8		
用土厚さ	3	73.000	3.48	4.96				8		
用土厚さ	4	123.175	5.88	55.13				8		
誤差	1	0.000	0.00	-2.04	5731.191	1910.397	1.087	8	1.736	有意でない
誤差	2	3.088	0.15	1.05				8		
誤差	3	21.388	1.02	19.35				8		
誤差	4	-16.313	-0.78	-18.35				8		
灌水頻度	1	0.000	0.00	20.48	8873.883	2957.961	1.683	8	1.736	有意でない
灌水頻度	2	-45.875	-2.19	-25.39				8		
灌水頻度	3	-13.975	-0.67	6.51				8		
灌水頻度	4	-22.088	-1.05	-1.60				8		
維持管理	1	0.000	0.00	-13.02	13590.828	4530.276	2.578	8	1.736	有意である
維持管理	2	21.100	1.01	8.08				8		
維持管理	3	-11.463	-0.55	-24.48				8		
維持管理	4	42.425	2.02	29.41				8		

表 1.4.3−1 求められた水準ごとの値と t 値および平方和・分散と検定

最適水準: (A4B4C1D4)=143.55+158.26+55.13+20.48+29.41=406.83(推定值)

用土種類:黒土

用土厚さ:10.0cm

灌水頻度:5日每

維持管理:殺菌·殺虫

現行条件: (A₁B₁C₄D₃)=143.55-11.09-68.04-1.60+29.41 = 92.23(推定值) 用土種類: 有機無機混合土

用土厚さ:2.5cm

灌水頻度:灌水無し

維持管理:適宜実施(施肥)

1.5 路面緑化の景観評価

1.5.1 研究の視点

名古屋市をケーススタディとして調査研究を試みている伊藤(2011)(参考文献参照) の提案によれば、路面緑化に関する景観環境改善効果の研究課題には、次のようなものが あるという。都市生活者(利用者)による知覚温度の違いの把握、行動形態の違い、緑化 駐車場などの印象調査、維持管理に関する課題等である。その成果の一つとして、路面緑 化された駐車場に対する利用者や歩行者による印象は、無機質な印象が美しい景観へと変 化する、心理的、感覚的に癒される、街全体が美しくなるというものであったと報告して いる。これら自体は新たな知見とは言えないが、路面や空地の緑化は、利用者や歩行者が 身近に体感、体験でき、また視認性も高く、施工費も安価なので、屋上緑化や壁面緑化と は異なる意味をもつ都市緑化の一形態であるといえよう。

市街地内に存在する、駐車場、軌道敷地、空閑地などを抽出し、それぞれの条件にふさ わしい技術を用いて緑化することで、こうした緑空間が集積してゆけば、都市内の緑とし ての意味がさらに高まることが期待できる。そのためには、路面緑化が都市生活者や利用 者に都市環境改善装置、市街地景観の快適性向上に資する装置であるということを認知し てもらうような工夫が必要である。それが景観評価に関する課題であろう。いくつかの事 例をもとに、この点を考察したい。

1.5.2 事例収集および考察

1) ヴァリン通り、路面電車軌道敷緑化(パリ市)

パリ市の外周環状道路であった往復6車線の広幅員道路の中央に低床式路面電車を新た に設置したものである。レール以外の部分はすべてケンタッキーブルーグラスにより緑化 された。施工後2年目の芝生の状態は良好で、写真は8月であるがブルーグラス独特の鮮 やかな緑が灰色の道路面を修景している。軌道敷内には交差点部分を除き自動車は進入で きないことも芝の成育を良好にしている要因であろう。

広幅員道路であればこそ可能になった電車と自動車のすみ分けである。道路両側の濃緑 色の樹木群、アースカラーの建築ファサード、灰色の車道舗装と芝の鮮緑色の対比が視覚 的な癒し効果を高めた好例である。

写真 1.5.2-1 ヴァリン通路面電車軌道敷芝生緑化

広島電鉄の軌道敷緑化(広島市)

日本でも路面電車の復活の兆しがあるのは、少子高齢社会に適合する市街地の交通手段 だからであろう。そしてその多くが軌道敷地内を緑化しようという計画をもっている。広 島の例は、自動車交通の多くない、すなわち軌道敷地内から車を排除してもそれほど支障 のない区間だけに試みられた緑化である。レール両側に白色のコンクリート補助帯が見え るのは、電車の車輪部分からのオイルによる芝草生育阻害を避けるため、その部分だけは 芝を張らなかったということであるが、その結果、緑化面積が縮小され緑化の景観向上効 果が薄れたのが悔やまれる。電車からの廃熱、オイル漏れなど、芝生生育への阻害要因を どう克服するかが課題である。景観的にはまだ検討の余地があるが、私企業の試みとして は高く評価できる。軌道敷緑化についは行政からの支援が求められる。

写真 1.5.2-2 路面電車軌道敷芝生緑化

3) ジヴェルニー村緑化駐車場(フランス)

画家モネの暮らした村として有名になった観光地である。観光客も多く駐車場が必要に なったが、村の雰囲気を壊さないようにと、緑化駐車場とした。芝生保護資材は使用しお らず、芝生もいわゆるメドーターフ状態で、雑草まじりの芝草地を刈り込んだものである。 対面の駐車スペースの中央部分が高くなっており、排水は後ろの砂利敷の通路部分に流れ るような勾配となっている。観光客の多い休日でも一か所あたり一日2時間、2回の駐車 が発生するという頻度である。頭から進入するという駐車方法が一般に浸透しているせい か、それと異なる反対向きの車は見えない。この方法は、車の出入時にハンドルの大きな 切り返しをする必要がないため、芝生への損傷あるいはインパクトが小さい。

4) 同

中央にリンゴの木が列植されているデザインは、いかにもジヴェルニー村の景観そして モネの好みそうな景観と言える。地域や歴史とのつながりを感じさせる植栽デザインは、 植物の管理(緑の手入れ)を粗放的なレベルに落としても、落ち着いた景観を醸し出して くれる。樹木による緑陰による日照不足が発生する恐れがないのか、また駐車によるイン パクトは一日トータルで4時間であれば、芝生を損傷させるようなレベルに達しないこと をこの例は示している。

写真 1.5.2-3 ジヴェルニー村緑化駐車場

写真 1.5.2-4 リンゴ樹の緑陰提供

5) 高速道路のパーキング(日本)

小規模なパーキングにおける緑化駐車場である。車の出入りが頻繁で時間をかけてゆっ くり駐車できないためか、頭から進入する車が多い。そのため切り返しが高頻度ではなく、 高速道路のパーキングとしては芝生の状態は致命的なレベルには達していない。

写真1.5.2-5 芝生の駐車場1

6) 同

芝草の草高が低いのは、芝草の種類がコウライシバであることによる。そのため刈り込 みの頻度は低くて良いが、タイヤによる擦り切れが目立つ。芝生の草種、管理頻度、刈高 は、緑化景観の良否に影響を与える。

写真 1.5.2-6 芝生の駐車場 2

7) 芝生保護ブロックの効果(熊本市)

芝生保護ブロックとして開発されたこれまでの製品で有効なものは少ない。ブロックが 積載荷重に耐えられず、沈んでしまうか、荷重が部分的に異なることによりブロックが傾 いてしまうので、雨天時にその低くなった部分に水と土が集まり、芝が埋まってしまい、 そうした条件をきらう芝草は生育できなくなるからである。芝生保護ブロックの課題は、 荷重がかかってもめり込まないこと、またある種の力がかかってもめくれたり、沈んだり しないような対策が施されているかである。この事例は、芝生の成長は旺盛とは言えず、 葉色も落ちて土の茶色が目立っているが、駐車場部分以外の路面舗装の色と、ブロックの 色と、芝の色がたまたま同系色であったため、よくない状態の芝生が目立たない。またブ ロック面と芝生面の面積比がおおむね1:1であることが、目立たなくしている要因の一 つでもある。

写真 1.5.2-7 芝生保護ブロックの駐車場 1

写真 1.5.2-8 芝生の損傷が目立たない

8) 沖縄海洋博記念公園立体駐車場の屋上面

緑化されてほぼ半年の状態である。これまでのところ日本では最大規模の屋上緑化駐車 場といえる。床土を改良した基盤と、保護ブロックを埋め込んだ基盤の二つからなり、後 者は走行部分に用いられている。この部分のコンクリートと芝生の表面積比は1:1であ る。視覚的には遠距離ほど緑が多く見えるのは、人間の視知覚特性によるものであり、緑 色面積を測定した結果をグラフに示したものは、距離にかかわらす面積比が1:1である ことを示している。遠距離ほど緑色に見えるという特性を、平面緑化のデザインに導入す ることを検討する必要があり、その結果をもとに、保護ブロックの形状や配置密度をデザ インすることが望ましい。

写真 1.5.2-9 立体駐車場屋上の緑化駐車場

図 1.5.2-10 緑被(視)率計測画像

図 1.5.2-2 駐車スペース各ブロックの緑被率

図 1.5.2-3 駐車スペース各ブロックの緑視率

9) 市街地の路面緑化(六本木)

仮想的に緑化した場合のフォトモンタージュであり、某雑誌社の企画である。建物壁面 色、街路樹の葉色、路面の色彩、これらの調和がとれていないと、緑化をしても、癒し、 潤いなどの効果が発揮できないことが示されている。市街地の路面緑化は色彩デザインが 重要であることを示している。

図 1.5.2-4 六本木の緑化

10) 市街地の路面緑化(秋葉原)

同じモンタージュである。建物壁面のテクスチャ、広告塔や看板の色彩、そして路面の 緑が調和していないと、美しく見えない。美しさは多様性の統一であり、さまざまな壁面 テクスチャ、広告や看板の色などを何でそして何色で統一すればよいかの議論に基づいて、 路面緑化のあり方を検討する必要があることを示唆している。

図 1.5.2-5 秋葉原の芝生化

参考文献

伊藤孝紀(2011):緑化路面駐車場からみる都市環境デザイン.都市計画 289.53-56.

第2章 路面緑化システムの耐久性評価

2.1 路面緑化システムのアイディアと試験施工

昨年度実施した、路面緑化の設計概念検討で得られた具体策を基に、路面緑化シス テムのアイディアを抽出し、システム構成を作成した。また、得られたシステム構成 での路面としての強度や緑化の可能性について確認するため、試験施工を実施した。

2.1.1 路面緑化システムの検討

昨年の検討で得られた具体策に対し構成案を検討した。

		具体策	雄卍安
	項目	内容	件 风 杀
1	芝生の保護構	歩きやすく、車が走行しても壊れ	既存のプラスチック製
	造	ない芝生保護構造としてメッシ	保護材を上下逆さに使
		ュ状に覆うのがよい	用
2	地中の水分環	異なる層で構成されていても、根	根の育成環境を確保で
	境	の生育する地中環境の水分量は	きる形状
		層ごとにバラツキのない方がよ	
		V	
3	ポーラスコン	多孔質な粗骨材+繊維混入セメ	多孔質粗骨材の保水性
	クリートのエ	ントによる保水性ポーラスコン	を利用したコンクリー
	夫	クリートが良い	А
4	植物の選定	灌水不要なコケ植物を用いるこ	コケおよびセダムを利
		とで路面緑化の無灌水仕様が出	用
		来る	

表 2.1.1-1 具体策に対する構成案

以上、具体策より得られた4つの構成案から、以下に示す5つのシステム構成を作成した。

2.1.2 システム構成

システム構成1(コンクリート版+芝生保護材3段)

図 2.1.2-1 システム構成 1

構成案1および2に該当するシステム構成として、図2.1.2-1に示す形状を考案した。 路面は保護材を上下逆に使用することにより、歩行性が良好なものとした。また、保護材 を3段積み重ねることで根の育成環境を確保する。また、路面としての十分な反力を得る ために、保護材の下端にはコンクリート版を設置することとした。

2) システム構成 2(保水性基盤材付きコンクリート+芝生保護材)

保護材(上下逆)

図 2.1.2-2 システム構成 2

構成案1および3に該当するシステム構成として、図2.1.2-2に示す形状を考案した。 路面は保護材を上下逆に使用することにより、歩行性を良好なものとした。また、コンク リート上に保水性基盤材の端材を固着させることによって、路面強度と保水性を確保する 構成とした。

3)システム構成3(合成樹脂性パレット+芝生保護材)

図 2.1.2-3 システム構成 3

構成案1および2に該当するシステム構成として、図2.1.2-3に示す形状を考案した。 路面は保護材を上下逆に使用し、歩行性を良好なものとした。また、システム構成1と同 様に根の育成空間を植生土により十分確保する構成としたが、その材料として積荷で広く 用いられ安価に入手できる合成樹脂製パレットを使用した。

4)システム構成4(不朽木材+芝生保護材)

芝生保護材(上下逆)

図 2.1.2-4 システム構成 4

構成案1および2に該当するシステム構成として、図2.1.2-4に示す形状を考案した。 芝生保護材を上下逆に使用する点と、根の育成空間の確保という点でシステム構成1や3 と同様である。しかし、根の育成空間の確保で用いられる材料を不朽木材とすることで、 CO2 固定という観点で環境負荷軽減に貢献できる構成とした。

5)システム構成5(コケ・セダム+芝生保護材)

図 2.1.2-5 システム構成 5

構成案4に該当するシステム構成として、図2.1.2-5に示す形状を考案した。芝生と は異なり、根の育成空間をあまり必要としないコケやセダムを使用することで、芝生保護 材を路盤上に直接設置し、保護材厚のみで成立する路面緑化構成とした。

2.1.3 試験施工

先に述べた 5 種類のシステム構成について、施工性や緑化性能の比較、路面としての強度の評価を行うために、試験施工を行った。

1)試験施工概要

試験施工は、平成22年11月9日、10日に実施した。施工場所は、竹中工務店技術研 究所中庭で、昨年、緑化コンクリートに関する試験施工を行った場所と併設して施工した。 試験施工面積は、各システム構成とも4m²(2m×2m)程度とし、システム構成の境界に は、型枠材を建て込んだ。試験施工の配置状況は、図2.1.3-1に示す通りである。

図 2.1.3-1 試験施工配置図

なお、試験施工では保護材を上下逆に設置するため、通常の張り芝が不可能であること から、播種による芝の植栽を行うこととした。また、システム構成5のコケおよび瀬セダ ムは、4m²のうち半分ずつ(1m×2m)設置することとした。

2) 試験施工手順

試験施工は以下の図 2.1.3-2 の手順に従って行った。

3)試験施工状況

試験施工状況を以下に示す。

着工前

掘削状況

路盤砕石敷均し完了

- 各システム構成区分
- コンクリート版設置

コンクリート打設

保水性基盤材設置

保護材・植生土設置状況

保護材設置

パレット・植生土設置

木材 (下段)・植生土設置

木材(上段)設置状況

保護材設置完了

コケ設置状況

セダム設置完了

芝播種状況

芝播種状況

芝播種完了

昨年冬季の施工となり芝生の生育量が確保できなかった。そのため芝生の耐久性評価は本 年度の夏季に実施する計画である。

4 タイプの芝生試験区

コケ・セダム薄層試験区

2.2 路面緑化システムのタイヤ走行性試験

2.2.1 実験概要

実験の目的

本実験は、路面緑化システムの構築に向けて実施した、緑化コンクリート適用の試験 区で、車両走行時のタイヤ圧に対する植物保護システムの評価を行うことを目的とした。

2) 路面緑化試験体の概要

耐踏圧実証実験に用いる路面緑化試験体は、竹中グループ保有技術である「緑化コン クリート」を基本として、踏圧からの植生保護を果たすべく芝生保護材を加えた構成にて 検討するものとした。

車両走行試験は昨年作成した試験区を用いる。試験区は既存の「緑化コンクリート」を基本に試験体の製作を行った。図2.2.1-1に路面緑化試験体の構成を示す。

図 2.2.1-1 路面緑化試験体の構成

(1) 緑化コンクリートの構成

路面緑化試験体の基本となる緑化コンクリートは、コンクリートに植生を与えると ともにコンクリートとして利用する上で必要な力学的性能を兼ね備えるため、連続した空 隙を保持した①ポーラスコンクリートを骨格に、この連続空隙に注入する②充填材、表面 に固着する③表層基盤の3要素から成る構造としている。緑化コンクリートの構成を図 2.2.1-2に示す。

2.2.2 路面緑化試験体の施工状況

1) 試験体の配置概要

耐踏圧実証実験に用いる路面緑化試験体は、竹中技術研究所の中庭の1角を用いて設置した。図2.1.2-1は路面緑化試験体の配置概要を示す。踏圧対策としては前述の芝生保護材を設置している。

図 2.2.2-1 路面緑化試験体の概要

2) 試験体の施工手順

緑化コンクリーの施工は、図 2.2.2-2 に示す手順にしたがって行った。

ポーラスコンクリートは、生コンプラントにて製造した後、アジテータトラックにて現地 まで運搬した。荷卸し後は品質管理試験にて所要の品質を確認し、型枠内に人力で撒き出 しローラにて不陸が出ないよう慎重に締め固めた。養生は通常のコンクリートと同様とし、 1週間の散水養生とした。

充填材は、グリンフィルAとグリンフィルBを加水攪拌しスラリーとして用いた。この スラリーは、ポーラスコンクリート表面から連続空隙内への常圧充填とした。

芝生保護材は、充填材施工完了後、ポーラスコンクリート上に設置した。表層基盤は、 生育基盤として黒土を芝生保護材の頂部付近まで撒き出した後に張芝を行い、ローラーに よって芝生保護材の頂部が露出するまで転圧を行った。

耐踏圧路面緑化試験体の施工状況
 路面緑化試験体の施工状況を以下に示す。

路盤砕石締固め

既存ポーラスコンクリート撤去

フィルター材設置

床付け・締固め

ポーラスコンクリート打設

同締固め状況

同締固め完了

同養生状況

充填材加水攪拌状況

充填材充填状況

充填材充填完了

芝生保護材設置状況

黒土撒き出し状況

張芝状況

張芝転圧状況

完成

4) ポーラスコンクリートの品質管理

ポーラスコンクリートの品質管理は、「緑化コンクリート」施工時と同様に実施した。 以下、結果を示す。

①フレッシュ性状

以上、フレッシュ性状、硬化物性に問題なく通常の施工が実施できた。

2.2.3 耐踏圧実証試験と評価

1) 車両走行試験

試験区は図 2.2.3-1 のように、 4つのパターンで構成している。 1 試験区の長辺方向は3m、短 辺方向は2mと1mである。こ の長辺方向に対して、垂直に車 両を走行させて芝生の痛み具 合や芝生保護材の痛み具合を 調査した。

車両による走行回数は100往 復を行い、芝生や芝生保護材お よび客土の固結状況について、 どのような変化が生じるかを 観察評価する。なお、この試験 と平行して、その場でのハンド

図 2.2.3-1 試験区の平面配置図

ル切り替えしによる保護材の破損状況の確認も行った。

2) 評価方法

①生の生育性評価

同一個所を100回の走行を繰返し、芝 生の枯損状況と走行回数の関係を見出 した。

②保護材の耐久性評価

100 回走行で、保護材の破損状況や客 土内への沈み込みの関係を見出した。 ③客土の固結性評価

同上 100 回走行での、客土部分の固結 状況を土壤硬度計にて状況変化を確認 する。中山式土壌硬度計で23mmを越え た時点で芝生の生育不可能な土壤硬度 と判定した。

2.2.4 実験の結果と考察

1) 土壤硬度

車両の走行は写真 2.2.4-1 にある バンを用いて 120 往復まで行った。10 往復、30 往復、60 往復、90 往復、120 往復それぞれに、車両走行部位の土壌 硬度測定を実施した。土壌硬度の測定 は中山式土壌硬度計にて5ヶ所/回の 測定を行った。

土壌硬度の変化には大きな特徴が現 れた。芝生保護材の無い試験区と芝生 保護材有の試験区(客土の上に芝生保 護材が置いてある状態)は車両の走行 回数が増加すると、それに伴い土壌硬 度が高くなる。一方、緑化コンクリー ト状に芝生保護材を載せた試験区では、 当然のことであるが土壌硬度の大きな 変化は見られない。路盤の上に打設さ れたポーラスコンクリートが芝生保護 材の沈み込みを防いでいるためである。 土壤硬度の初期値が高いのは、試験区 施工時に客土と張芝を十分に締め固め た効果が影響しておるものと考えられ る。

図 2.2.3-2 試験区の断面構成図

写真 2.2.4-1 車両走行試験の実施状況

2) 沈み込み量測定

沈み込みの量は、表 2.2.4-1 のように 測定を計画したものの、回数が少ない場 合に芝生の葉が起き上がるため明確に沈 み込んだ状況を捉える事が困難であった。 そこで、120回の車両の往復が終了し た後に沈み込み量を測定した。(写真 2.2.4-1 参照)3試験区のそれぞれで5 ヶ所の測定を行った平均値を表 2.2.4-2 に示している。

保護材の無い試験区は、目視でもはっ きりとわかる轍の跡となっている。しか し芝生保護材があると、その沈み込み量 は半分に減少している。芝生保護の効果 がはっきりと確認できた。ただし、この 後元の高さに復元できるかどうかは現時 点で不明である。復元できぬ場合は、土 壌の固結化が進み、また芝生の生長点が 痛められるため、健全な芝生景観の維持 が困難となるものと予想される。

3) 据え切り試験

車両の前輪を使用し、その場での据 え切り試験を行った。写真は15回実施し た状況である。芝生保護材に破損は見ら れなかったが、芝生は大きなダメージを 受ける結果となった。タイヤの突起が地 面にふれると、根こそぎ葉茎及びランナ ーを破壊してしまうことが判った。

表 2.2.4-1 120 回	車両走行後	後の沈み込み量
-----------------	-------	---------

走行回数	保護材無	保護材有	ポラコン+保護材
10回			
30回			
60回			
90回			
120回	22mm	12mm	1mm

写真 2.2.4-2 轍部分の沈み込み量

写真 2.2.4-3 据え切り試験の跡

2.3 路面緑化ユニットの小型 FWD 評価と FEM 解析

2.3.1 路面緑化ユニットの小型 FWD 評価

1) 舗装の構造評価法

従来の技術では、FWD 試験があるが路面に載荷板を設置し、重錘を自由落下させそ の時の荷重、路面のたわみを測定する。装置がやや大型であるのが難点である。 また、平板載荷試験は、載荷板を利用して地盤に載荷し、載荷重と変形量を測定するが、 大型反力装置が必要なため、材料費、人件費、機械・設備費等を要し、さらにこれらを 用いた計測は準備からデータ収録までに多くの労力と時間を要する。 FWD 試験と平板載荷試験の写真を下記に示す。

写真 2.3.1-1FWD 試験

写真 2.3.1-2 平板載荷試験

今回使用したTML式小型FWDシステム「FWD-Light」は、取り扱いが容易で可搬性が高く、 地盤反力係数(K)値、及び地盤弾性係数(E)値が簡単に短時間で計測できる。小型F WDシステムの概要としては、小型FWD本体の重錘を自由落下させ、そのとき発生する衝 撃荷重と変位量を荷重計、加速度計を用いて測定する。変位量は加速度計の測定値を2 回積分することで求める。また、外部変位センサーを用いて4点までの外部変位を同時 に測定することが可能である。

主な適用範囲は下記に示す通りである。

- ・鉄道盛土、路床、路盤等の一般的な地盤 ・空港等の剛性の高い地盤
- 簡易舗装

- ・インターロッキングブロック舗装

図 2.3.1-1 小型 FWD システムと写真 2.3.1-3 簡易舗装小型 FWD 試験を示す。

図 2.3.1-1 小型 FWD システム

写真 2.3.1-3 簡易舗装 小型 FWD 試験

2) 試験目的

本試験では、各種試験施工区の地盤耐力評価を小型 FWD 試験を用いて荷重および変 位量を算出し評価した。

3) 試験種類

試験施工区タイプ1(コンクリート版+保護材3段)、タイプ2(保水性基盤付きコン クリート+保護材)、タイプ3(パレット+保護材)、タイプ4(不朽木材+ペブルベース)

図 2.3.1-2 試験施工位置を示し、写真 2.3.1-4 に試験施工位置写真を示す。

* タイプ1~4の構成は2.1路面緑化システムのアイディアと試験施工に示す

図 2.3.1-2 試験施工位置

写真 2.3.1-4 試験施工位置

4) 試験方法

小型 FWD 試験方法は、各タイプの中央位置に小型 FWD 試験機の載荷板を設置する。

写真 2.3.1-5 に小型 FWD 試験状況を示す。

地面から 500m の高さから載荷板上に 15kg の 重錘を自由落下させることにより、衝撃荷重を 加える。これにより、生じた荷重と変位量を算出 した。

試験結果

写真 2.3.1-5 小型 FWD 試験状況

試験施工区の地盤耐力評価(小型 FWD 試験)結果を下記表 2.3.1-1 に示す。

試験区の種	荷重 (KN)	変位(mm)	備考	
類				
タイプ 1	14.58	3.43	コンクリート版+保護材 3	
			段	
タイプ 2	18.28	2.15	保水性基盤付きコンクリー	
			ト+保護材	
タイプ 3	15.28	5.68	パレット+保護材	
タイプ 4	11.77	6.99	不朽木材+ペブルベール	

表2.3.1-1試験施工区の地盤耐力評価(小型FWD試験)

小型 FWD 試験の結果、タイプ 1 (コンクリート版+保護材 3 段)、タイプ 2 (保水性 基盤材付きコンクリート+保護材)の変位量は 4mm 以内で、他の試験区より低い値であ った。

2.3.2 路面緑化ユニットおよび支柱材の選定

1) 路面緑化ユニットの選定 路面緑化の FEM 解析は、ポーラスコンクリートの保水性向上に関する実験と試験施 工区の地盤耐力評価(小型 FWD 試験)の結果からタイプ1(コンクリート版+保護材3 段)の構成が、芝の育成状況、地盤耐力が良いと考えられる。タイプ1(コンクリート +保護材3段)の当初アイディアは、コンクリート板に支柱材を設置し一体化させ、上 面には芝生保護構造を取り付ける構成であった。

今回、実施します路面緑化の FEM 解析は、当初アイディアの路面緑化ユニット構成で行い評価、検討を実施した。

2) 構成概要

構成概要は、コンクリート板に支柱 材を設置し一体化させ、上面には芝生 保護構造を取り付けた。

ユニットには大きな空間が設けられ るため、この部分に客土材を充填する。 コンクリート板は保水する窪みと排水 する穴を有する。コンクリート板の保 水量を多くすることで客度量を少なく することも可能となる

図 2.3.2-1 路面緑化ユニット構成

支柱材の選定

表 2.2.2-1 に支柱材の応力と価格の関係を示す。 写真 2.2.2-1 に各種支柱材料を示す。

<u> </u>				
支柱材の種類	压縮応力(N/mm ²)	50cm 当り価格(円)		
塩ビパイプ外径 26mm	58.6	189		
ABS 直径 10mm	82.9	441		
アクリル直径 10mm	110.1	385		
ベーク直径 10,mm	167.5	525		

表2.3.2-1支柱材の圧縮応力と価格の関係

写真 2.3.2-1 各種支柱材料

図 2.3.2-2 に支柱材の圧縮応力と価格の関係と写真 2.2.2-1 に圧縮強度試験を示す。

図2.3.2-2を基に、支柱材選定は材料が安価で圧縮応力で50(N/mm²)以上ある塩ビ パイプ外径26mmを選定した。

図 2.3.2−2 支柱材の圧縮応力と価格の関係

写真 2.3.2-2 圧縮強度試験

3) 支柱材(塩ビパイプ外径 26mm)の強度試験結果

下記の表2.2.2-2に塩ビパイプ外径26mmの強度試験結果を示す。

支柱材の種類	圧縮応力(N/mm ²	曲げ応力(N/mm²	ポアソン比
))	
塩ビパイプ外径26mm	58.6	61.5	0.3

表2.3.2-2塩ビパイプ外径26mmの強度試験結果

下記の写真2.3.2-3に曲げ応力測定を示し、写真2.3.2-4にポアソン比測定を示す。

写真 2.3.2-3 曲げ応力測定

2.3.3 路面緑化ユニットの構造検討

1) モデル諸元

(2)モデル種類

横補強材のある場合と無い場合について検討する。

モデルイメージ図
2.3.3-2 にモデルイメージを示す。

図 2.3.3-2 モデルイメージ

3) 設定荷重

鋼道路橋設計示方書の値を用いる。

・T-20(20tf)を採用する。

前輪面積

 $Af=20 \times 12.5 = 250 cm^2$

前輪支持荷重

 $0.1W=0.1 \times 20=2tf=2000kgf$

前輪単位荷重

W=2000/250=8kg/cm²

後輪面積

Af= $20 \times 50 = 1000$ cm²

後輪支持荷重

 $0.4W=0.4 \times 20=8tf=8000kgf$

後輪単位荷重

 $W=8000/1000=8kgf/cm^{2}$

図 2.3.3-3 T-20の荷重分布(平面図)

(1) 水平荷重

水平荷重は車両の走行による反力により生ずる。その反力は走行時よりも発車時ま たは停止時に大きいと考えられる。そこで、発車後定速走行までの時間を仮定すれば 発車時に生ずる反力を水平力と考えれば水平力は計算できる。

定速走行速度 V を時速 V=8km とし、そこまでに達する時間 $\Delta t \delta \Delta t$ =0.5sec 加速度 α は以下のようになる。

 $\alpha = V/\Delta t = 800000/3600/0.5 = 444 cm/sec^{2}$

質量mは重量から求まるから全水平力 Ph は以下のようになる。

 $m=W/g=20000/980=20.4 kgf \cdot sec^{2}/cm$

Ph=m $\cdot \alpha = 444 \times 20.4 = 9000 \text{kgf}$

車輪の接地面積 A が分かれば単位面積当たりの水平力 ph は計算できる。

 $A=2\times12.5\times20+2\times50\times20=2500\,\mathrm{cm}^2$

ph=9000/2500=3.6kgf/cm²

から一本当たりの負担力 ps は支配面積 100cm²から計算できる。

Ps=3.6×100=360kgf(前輪:4本、後輪:10本)

(2) 鉛直荷重

検討モデルのメッシュ割は 10cm×10cm であるからポスト1本当たり 800kgf の荷 重とする。

Pv=800kgf/本(前輪:4本、後輪:10本)

(3) 捩り荷重

車両を止めた状態でハンドル操作を行うと前輪がその位置で回転し、路面に捩りモー メントが生じる。このモーメントを捩り荷重と考えるとその値は前輪の重量とタイヤと 路面の摩擦係数で求まるとする。路面はプラスチックまたは植物の葉であるからタイヤ 面との摩擦係数μをμ=0.5、前輪の重量を Wf とすれば捩りモーメント Mt は次のよう になる。

Mt=Wf・μ =2000×0.5=1000kgf・cm これを軸力に変換するには腕の長さ=ポスト間隔 pp

と考えてこの値で除して全水平力 Pt を求める。

Pt=Mt/pp=1000/10=100kgf 片側負担力は2本で負担すると考える。

pt=100/2=50kgf/本(前輪:4本) 以上のデータを作用荷重として検討する。

図 2.3.3-4 前輪タイヤ捩り

- 4) 横補強材のある場合の解析結果
 - (1) 前輪水平時の解析結果

Output Set: NX NASTRAN Case 1 Deformed(4.623): Total Translation

図 2.3.3-6 前輪水平時 変形図 (単位:mm)

(2) 前輪鉛直時の解析結果

Output Set: NX NASTRAN Case 2 Deformed(4.528): Total Translation

図 2.3.3-12 前輪鉛直時 変形図(単位:mm)

Output Set: NX NASTRAN Case 2 Contour: Bar EndA Pl1 Shear Force

図 2.3.3-16 前輪鉛直時 ポスト応力度図 (単位:kgf/mm²)

(3) 前輪捩り時の解析結果

Output Set: NX NASTRAN Case 3 Deformed(0.161): Total Translation

図 2.3.3-20 前輪捩り時 ポストせん断力図 (単位:kgf)

Output Set: NX NASTRAN Case 3 2.05 Contour: Bar EndA Axial Force 1.794 1.537 1.025 0.769 0.512 0.256 0. -0.256 -0.512 -0.769 -1.025 -1.281 ZX-1.537 -1.794 -2.05

図 2.3.3-21 前輪捩り時 ポスト軸力図(単位:kgf)

図 2.3.3-22 前輪捩り時 ポスト応力度図 (単位:kgf/mm²)

(4) 後輪水平時の解析結果

図 2.3.3-26 後輪水平時 ポストせん断力図 (単位:kgf)

Output Set: NX NASTRAN Case 4 Contour: Bar EndA Min Comb Stress

0.0544

(5) 後輪鉛直時の解析結果

図 2.3.3-30 後輪鉛直時 変形図(単位:mm)

Output Set: NX NASTRAN Case 5 Contour: Bar EndA Pl1 Shear Force

図 2.3.3-32 後輪鉛直時 ポストせん断力図 (単位:kgf)

Output Set: NX NASTRAN Case 5 Contour: Bar EndA Min Comb Stress

図 2.3.3-34 後輪鉛直時 ポスト応力度図 (単位:kgf/mm²)

- 5) 横補強材のない場合の解析結果
 - (1) 前輪水平時の解析結果

Output Set: NX NASTRAN Case 1 Deformed(7.851): Total Translation

図 2.3.3-38 前輪水平時 ポストせん断力図(単位:kgf)

図 2.3.3-40 前輪水平時 ポスト応力度図 (単位:kgf/mm²)

(2) 前輪鉛直時の解析結果

Output Set: NX NASTRAN Case 2 Deformed(4.728): Total Translation

図 2.3.3-42 前輪鉛直時 変形図(単位:mm)

Output Set: NX NASTRAN Case 2 Contour: Bar EndA Pl1 Shear Force

図 2.3.3-44 前輪鉛直時 ポストせん断力図 (単位:kgf)

Output Set: NX NASTRAN Case 2 Contour: Bar EndA Min Comb Stress

0.0971

図 2.3.3-46 前輪鉛直時 ポスト応力度図(単位:kgf/mm²)

(3) 前輪捩り時の解析結果

Output Set: NX NASTRAN Case 3 Deformed(0.172): Total Translation

図 2.3.3-48 前輪捩り時 変形図(単位:mm)

図 2.3.3-50 前輪捩り時 ポストせん断力図 (単位:kgf)

図 2.3.3-51 前輪捩り時 ポスト軸力図(単位:kgf)

図 2.3.3-52 前輪捩り時 ポスト応力度図 (単位:kgf/mm²)

(4) 後輪水平時の解析結果

Output Set: NX NASTRAN Case 4 Deformed(17.97): Total Translation

図 2.3.3-54 後輪水平時 変形図(単位:mm)

図 2.3.3-56 後輪水平時 ポストせん断力図 (単位:kgf)

Output Set: NX NASTRAN Case 4 Contour: Bar EndA Axial Force

Output Set: NX NASTRAN Case 4

図 2.3.3-58 後輪水平時 ポスト応力度図 (単位:kgf/mm²)
(5) 後輪鉛直時の解析結果

Output Set: NX NASTRAN Case 5 Deformed(5.196): Total Translation

Output Set: NX NASTRAN Case 5 Contour: Bar EndA Plane1 Moment

図 2.3.3-62 後輪鉛直時 ポストせん断力図 (単位:kgf)

Output Set: NX NASTRAN Case 5 Contour: Bar EndA Axial Force

図 2.3.3-64 後輪鉛直時 ポスト応力度図 (単位:kgf/mm²)

6) 結果の検討

結果の検討に当たり形状と載荷荷重の関係から、図2.3.3-65の示す節点、部材要素を 取出し比較検討を行う。当該モデルは変形形状から見ると鉛直荷重時では個々の独立性 が高く、荷重の再配分はあまりないが、水平荷重に対しては上部に設置するプラスチッ ク製の植物保護材が水平剛性確保の役割を果たし、荷重分散の効果が期待できる。結果 を示すに当たり、type1 が中間横補剛材のある場合、type2 が中間横補剛材のない場合 を示している。

この結果から判断すると中間横補剛材のある場合の変形は水平荷重に対して半分程度まで小さくなっている。

Y Z—X

図 2.3.3-65 検討プラスチックポスト位置

(1) 頂部変位

type1 は中間横補剛材がある場合、type2 は中間横補剛材がない場合である。

表 2.3.3-1 頂部変位一覧表

前斬	榆水平時		type1]	領部変位			type2]	〕 部変位		type2/
No.	節点ID	δ x(mm)	δ y(mm)	$\delta z(mm)$	δ vector	δ x(mm)	δ y(mm)	δ z(mm)	δ vector	type1
1	60202	2.126	0.412	0.112	2.168	5.080	0.564	0.128	5.112	2.358
2	60303	2.276	0.308	0.012	2.297	5.248	0.408	-0.003	5.264	2.292
3	60404	2.566	0.270	0.009	2.580	5.629	0.332	0.009	5.638	2.186
4	60505	3.106	0.281	0.007	3.119	6.257	0.312	0.004	6.265	2.008
5	60606	4.621	0.102	0.077	4.623	7.850	0.105	0.086	7.851	1.698
6	60607	4.621	-0.102	-0.077	4.623	7.850	-0.105	-0.086	7.851	1.698
7	60508	3.106	-0.281	-0.007	3.119	6.257	-0.312	-0.004	6.265	2.008
8	60409	2.566	-0.270	-0.009	2.580	5.629	-0.332	-0.009	5.638	2.186
9	60310	2,276	-0.308	-0.012	2,297	5,248	-0.408	0.003	5,264	2,292
10	60211	2 1 2 6	-0.412	-0.112	2 168	5 080	-0.564	-0 128	5 1 1 2	2 358
前載		2.120	tvpe11	部変位	2.100	0.000	type21	部変位	0.112	type2/
No	箭占ID	δ v(mm)	δy(mm)	δ z(mm)	Svector	δ v(mm)	δy(mm)	δ z(mm)	Svector	type1
1	_町 流口 60202	0.01/	0 9(1111)	0 2(1111)	0 00000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 2(1111)	0 0000	0.01/
2	60202	0.014	0.014	0.032	0.030	0.000	0.000	0.000	0.033	0.914
2	60404	0.010	0.010	0.002	0.021	0.009	0.009	0.003	0.013	0.001
3	00404	0.018	0.018	-0.048	0.004	0.011	0.011	-0.050	0.053	0.972
4	00505	0.021	0.021	-0.105	0.109	0.013	0.013	-0.111	0.112	1.026
5	60606	0.1/4	0.1/4	-4.521	4.528	0.194	0.194	-4./20	4./28	1.044
6	60607	-0.174	0.174	-4.521	4.528	-0.194	0.194	-4.720	4./28	1.044
7	60508	-0.021	0.021	-0.105	0.109	-0.013	0.013	-0.111	0.112	1.026
8	60409	-0.018	0.018	-0.048	0.054	-0.011	0.011	-0.050	0.053	0.972
9	60310	-0.015	0.015	0.002	0.021	-0.009	0.009	0.003	0.013	0.601
10	60211	-0.014	0.014	0.032	0.038	-0.008	0.008	0.033	0.035	0.914
前	扁捩り時		type1]	領部変位			type2]]	頁部変位		type2/
No.	節点ID	δ x(mm)	δy(mm)	δz(mm)	δ vector	δ x(mm)	δy(mm)	δ z(mm)	δ vector	type1
1	60202	0.053	-0.032	0.001	0.062	0.114	-0.086	0.001	0.143	2.296
2	60303	0.046	-0.023	0.000	0.052	0.094	-0.064	0.000	0.114	2.207
3	60404	0.045	-0.014	0.000	0.047	0.081	-0.043	0.000	0.091	1.953
4	60505	0.060	-0.005	0.000	0.060	0.083	-0.023	0.001	0.086	1.438
5	60606	0.160	-0.017	0.011	0.161	0.170	-0.023	0.013	0.172	1.065
6	60607	0 160	0.017	-0.011	0 161	0 1 7 0	0.023	-0.013	0 1 7 2	1 065
7	60508	0.100	0.005	0.000	0.060	0.083	0.023	-0.001	0.086	1 438
8	60409	0.000	0.000	0.000	0.000	0.000	0.020	0.001	0.000	1 953
0	60210	0.040	0.014	0.000	0.047	0.001	0.064	0.000	0.001	2 207
10	60211	0.040	0.023	-0.000	0.032	0.034	0.004	-0.000	0.114	2.207
10		0.000	0.03Z	-0.001	0.002	0.114	0.000	-0.001	0.143	2.290
1友判	サイト	<pre>() 2</pre>	Lyper J	山文化	2	2 () 2	Lypez J	山文化	2	typez/
NO.	即只口	0 x(mm)	0 y(mm)	0 z(mm)	0 vector	0 x(mm)	0 y(mm)	0 z(mm)	0 vector	typei
	60202	5.274	0.923	0.274	5.301	12.001	1.269	0.310	12./19	2.372
2	60303	5.596	0.685	0.031	5.637	12.999	0.920	-0.007	13.032	2.312
3	60404	6.217	0.5/2	0.020	6.243	13.832	0.724	0.019	13.851	2.219
4	60505	/.299	0.467	0.014	/.313	15.124	0.548	0.006	15.134	2.069
5	60606	9.670	0.101	0.011	9.670	17.676	0.120	-0.005	17.676	1.828
6	60607	9.923	0.018	0.004	9.923	17.968	0.023	0.003	17.968	1.811
7	60508	7.783	-0.167	-0.008	7.784	15.686	-0.195	-0.006	15.687	2.015
8	60409	6.535	-0.424	-0.017	6.549	14.222	-0.532	-0.018	14.232	2.173
9	60310	5.740	-0.707	-0.031	5.783	13.176	-0.941	0.007	13.210	2.284
10	60211	5.218	-1.160	-0.284	5.353	12.572	-1.565	-0.322	12.673	2.368
後輔	論鉛直時		type1]	領部変位			type2]	部変位		type2/
No.	節点ID	δ x(mm)	δy(mm)	δ z(mm)	δ vector	δ x(mm)	δy(mm)	δ z(mm)	δ vector	type1
1	60202	0.035	0.032	0.067	0.082	0.023	0.018	0.068	0.074	0.900
2	60303	0.037	0.035	0.003	0.051	0.024	0.020	0.006	0.032	0.628
.3	60404	0.041	0.048	-0.090	0 1 1 0	0.025	0.030	-0.093	0 101	0.913
4	60505	0.044	0 202	-0.589	0.624	0.026	0 182	-0.517	0.548	0.879
5	60606	0.010	0.176	-5.060	5.024	-0.0020	0 1 9 0	-5 100	5 102	1 025
6	60607	_0.000	0 177	-5.062	5.000	0.002	0.109	-5 150	5 161	1 010
7	605007	_0.001	0.177	0.000	0.071	_0.004	0.100	-0 561	0.101	0.001
	60400	-0.032	0.213	-0.030	0.071	-0.010	0.192	0.001	0.093	0.004
► S	00409	-0.029	0.057	-0.129	0.144	-0.009	0.011	-0.105	0.106	0./3/
9	00310	-0.024	0.052	-0.013	0.059	-0.010	0.026	-0.009	0.029	0.498
1 10	60211	-0.020	0.053	0.078	I 0.096	I −0.006	0.029	0.081	0.086	0.891

(2) 部材力

表 2.3.3-2~表 2.3.3-5 に要素の部材力を示す。

tvpe1		要素	要素	曲	げモーメ	ント(kgf・m	m)	せん断	力(kgf)	軸力
前輪水平	No.	番号	特性	面内始点	面外始点	面内終点	面外終点	面内	面外	(kgf)
	1	50202	1	-234	-52	-347	-80	5.6	1.4	7.3
	2	50303	1	-462	-74	-716	-117	12.7	2.2	-0.6
	3	50404	1	-541	-78	-842	-126	15.1	2.4	0.2
	4	50505	1	-671	-104	-1065	-172	19.7	3.4	0.4
	5	50606	1	-455	-50	-953	-83	24.9	1.6	13.3
	6	50607	1	-455	50	-953	83	24.9	-1.6	-13.3
	7	50508	1	-671	104	-1065	172	19.7	-3.4	-0.4
	8	50409	1	-541	78	-842	126	15.1	-2.4	-0.2
	9	50310	1	-462	74	-716	117	12.7	-2.2	0.6
	10	50211	1	-234	52	-347	80	5.6	-1.4	-7.3
type1	Ν.	要素	要素	曲	げモーメ	ント(kgf・m	m)	せん断	力(kgf)	軸力
前輪鉛直	INO.	番号	特性	面内始点	面外始点	面内終点	面外終点	面内	面外	(kgf)
	1	50202	1	1	1	0	0	0.0	0.0	0.0
	2	50303	1	3	3	4	4	0.0	0.0	0.0
	3	50404	1	12	12	16	16	-0.2	-0.2	-0.4
	4	50505	1	12	12	7	7	0.2	0.2	3.6
	5	50606	1	1016	1016	1465	1465	-22.4	-22.4	-730.7
	6	50607	1	-1016	1016	-1465	1465	22.4	-22.4	-730.7
	7	50508	1	-12	12	-7	7	-0.2	0.2	3.6
	8	50409	1	-12	12	-16	16	0.2	-0.2	-0.4
	9	50310	1	-3	3	-4	4	0.0	0.0	0.0
	10	50211	1	-1	1	0	0	0.0	0.0	0.0
type1	No	要素	要素	曲	げモーメ	ント(kgf・m	m)	せん断	カ(kgf)	軸力
前輪捩り	NO.	番号	特性	面内始点	面外始点	面内終点	面外終点	面内	面外	(kgf)
	1	50202	1	-7	4	-10	6	0.2	-0.1	0.1
	2	50303	1	-10	4	-16	6	0.3	-0.1	0.0
	3	50404	1	-11	2	-17	3	0.3	0.0	0.0
	4	50505	1	-15	-1	-25	-2	0.5	0.0	0.0
	5	50606	1	26	8	15	12	0.5	-0.2	2.0
	6	50607	1	26	-8	15	-12	0.5	0.2	-2.0
	7	50508	1	-15	1	-25	2	0.5	0.0	0.0
	8	50409	1	-11	-2	-17	-3	0.3	0.0	0.0
	9	50310	1	-10	-4	-16	-6	0.3	0.1	0.0
	10	50211	一一	-/	 バー 4	-10	-6	0.2	0.1	-0.1
type I 终龄 w	No.	安东	安糸	프라산노		ノト(KgT・m 王由線上	m) 王总级上	セル町	ノ(KgT) エド	粗力
1 夜 輛 小 千	1	借5 50202	1寸1土	山内始点 500	Ⅲ%下/归	山内於京	Ⅲ21於只	<u> </u>	山71	(KgT)
	ן י	50202	1	-1121	-161	-1751	-173	21.0	3.1	-1.2
	2	50404	1	-1206	-101	-1751	-250	25.0	4.7	-1.3
	3	50505	1	-1290	-150	-2013	-232	30.9	4.0	0.2
	4 5	50606	1	-1942	-152	-2430	<u>-240</u> _/1	44.0 61 6	4.0 0 0	0.0
	6	50607	1	-1946	1	-3288	-7	67.1	0.0	0.0
	7	50508	1	-1612	4 4	-2572	70	48.0	-1.6	0.2 _0 R
	/ ع	50409	1	-1360	118	-2121	191	38.1	-3.7	0.0
	9	50310	1	-1161	169	-1801	269	32.0	-5.0	1 4
	10	50211	1	-562	160	-828	250	13.3	-4.5	-18.4
type1		要素	要素	Щ. Ш	げモーメ	ント(kgf・m	m)	せん断	。 力(kgf)	軸力
後輪鉛直	No.	番号	特性	面内始点	面外始点	面内終点	面外終点	面内	面外	(kgf)
	1	50202	1	0	2	-2	1	0.1	0.1	0.0
	2	50303	1	2	7	1	9	0.0	-0.1	0.0
	3	50404	1	-9	38	-18	48	0.4	-0.5	0.6
	4	50505	1	3	921	-5	1338	0.4	-20.8	-40.9
	5	50606	1	-65	981	-85	1412	1.0	-21.5	-772.9
	6	50607	1	2	<u>95</u> 8	3	1376	<u>-0.</u> 1	<u>-20.</u> 9	<u>-766.</u> 4
	7	50508	1	-33	947	-42	1369	0.4	-21.1	<u>-3</u> 7.1
	8	50409	1	9	-51	18	-67	-0.4	0.8	4.4
	9	50310	1	-7	-2	-8	-3	0.1	0.1	0.5
	10	50211	1	-4	2	-4	0	0.0	0.1	-0.1

表 2.3.3-2 type1 の最上部要素の部材カー覧

tvpe1		要素	要素	曲	げモーメ	ント(kgf・m	im)	せん断	力(kgf)	軸力
前輪水平	No.	番号	特性	面内始点	面外始点	面内終点	面外終点	面内	面外	(kgf)
	1	10202	1	367	2	-350	-1	14.3	01	22.4
	2	10303	1	366	1	-353	-1	14.4	0.1	117
	3	10404	1	364	0	-356	-1	14.4	0.0	49
	4	10505	1	363	0	-359	-1	14.4	0.0	2.1
	- - 5	10606	1	362	0	-350	0	1//	0.0	1.0
	5	10607	1	262	0	-250	0	14.4	0.0	-1.0
	0	105007	1	302	0	-309	1	14.4	0.0	-1.0
	/	10308	1	303	0	-309	1	14.4	0.0	-2.1
	0	10409	1	304	1	-300	1	14.4	0.0	-4.9
	9	10310	1	300	-1	-353	1	14.4	0.0	-11./
	10	10211	一一	307	<u>-Z</u> パナーズ	-350		14.3	-0.1	- <u>ZZ.4</u>
type I	No.	安系	安系			ノト(KgT・m	im) 	マんめ	ノ(KgT) エーー	判り
刖輛鉛圁		<u> </u>	特性	面闪始点	面 外始点	田 内終点	面 外終点	田内	田外	(KgT)
	1	10202	1	6	6	6	6	0.0	0.0	21./
	2	10303	1	8	8	9	9	0.0	0.0	1.6
	3	10404	1	14	14	15	15	0.0	0.0	-30.3
	4	10505	1	25	25	25	25	0.0	0.0	-90.0
	5	10606	1	20	20	20	20	0.0	0.0	-175.4
	6	10607	1	-20	20	-20	20	0.0	0.0	-175.4
	7	10508	1	-25	25	-25	25	0.0	0.0	-90.0
	8	10409	1	-14	14	-15	15	0.0	0.0	-30.3
	9	10310	1	-8	8	-9	9	0.0	0.0	1.6
	10	10211	1	-6	6	-6	6	0.0	0.0	21.7
type1	No	要素	要素	曲	げモーメ	ント(kgf・m	im)	せん断	カ(kgf)	軸力
前輪捩り	INO.	番号	特性	面内始点	面外始点	面内終点	面外終点	面内	面外	(kgf)
	1	10202	1	7	-7	-7	7	0.3	-0.3	0.2
	2	10303	1	5	-5	-5	5	0.2	-0.2	0.1
	3	10404	1	4	-4	-4	4	0.2	-0.2	0.1
	4	10505	1	2	-2	-2	2	0.1	-0.1	0.1
	5	10606	1	1	-1	-1	1	0.0	0.0	0.0
	6	10607	1	1	1	-1	-1	0.0	0.0	0.0
	7	10508	1	2	2	-2	-2	0.1	0.1	-0.1
	8	10409	1	4	4	-4	-4	0.2	0.2	-0.1
	9	10310	1	5	5	-5	-5	0.2	0.2	-0.1
	10	10211	1	7	7	-7	-7	0.3	0.3	-0.2
type1	N	要素	要素	田	げモーメ	ント(kgf・m	im)	せん断	力(kgf)	軸力
後輪水平	INO.	番号	特性	面内始点	面外始点	面内終点	面外終点	面内	面外	(kgf)
	1	10202	1	917	4	-877	-3	35.9	0.1	54.8
	2	10303	1	914	2	-883	-2	35.9	0.1	28.6
	3	10404	1	909	1	-891	-2	36.0	0.1	11.9
	4	10505	1	906	0	-897	-1	36.1	0.0	4.6
	5	10606	1	904	0	-900	0	36.1	0.0	2.4
	6	10607	1	905	0	-900	0	36.1	0.0	1.0
	7	10508	1	907	0	-897	1	36.1	0.0	-2.5
	8	10409	1	911	0	-890	1	36.0	0.0	-11.4
	9	10310	1	916	-2	-882	3	35.9	-0.1	-29.4
	10	10211	1	918	-3	-875	4	35.9	-0.2	-56.8
tvpe1		要素	要素		げモーメ	ント(kgf・m	im)	せん断	」。 力(kgf)	軸力
後輪鉛直	No.	番号	特性	面内始点	面外始点	面内終占	面外終点	而内	面外	(kef)
C (III AL LE	1	10202	1	11	14	12	15	0.0	0.0	44 6
	2	10303	1	15	19	16	20	0.0	0.0	2 0
	3	10404	1	25	32	27	34	0.0	0.0	-63.0
		10505	1	30	52	40	54	0.0	0.0	-179.7
	- + 5	10606	1	30	32		33	0.0	0.0	-3175
	۵ ۵	10607	1	1	25	00	25	0.0	0.0	_2/10
	0	105007	1	1	50		30 60	0.0	0.0	-220.2
┝──┤	/	10/00		-21	40	-23	09 E1	0.0	0.0	-229.3
	ð O	10409		-23	49	-25	51	0.0	0.0	-99.0
	9	10310	I 	-18	30	-19	32	0.0	0.0	-10.3
			1							6.7.7

表 2.3.3-3type1 の最下部要素の部材カー覧

type2	м.	要素	要素	曲	げモーメ	ント(kgf・m	m)	せん断	力(kgf)	軸力
前輪水平	INO.	番号	特性	面内始点	面外始点	面内終点	面外終点	面内	面外	(kgf)
	1	50202	1	-630	-61	-839	-83	10.4	1.1	15.4
	2	50303	1	-1023	-78	-1304	-100	14.1	1.1	-3.3
	3	50404	1	-1074	-66	-1373	-84	14.9	0.9	0.4
	4	50505	1	-1172	-67	-1500	-85	16.4	0.9	0.4
	5	50606	1	-856	-34	-1160	-42	15.2	0.4	14.1
	6	50607	1	-856	34	-1160	42	15.2	-0.4	-14.1
	7	50508	1	-1172	67	-1500	85	16.4	-0.9	-0.4
	8	50409	1	-1074	66	-1373	84	14.9	-0.9	-0.4
	9	50310	1	-1023	78	-1304	100	14.1	-1.1	3.3
	10	50211	1	-630	61	-839	83	10.4	-1.1	-15.4
type2	N.	要素	要素	曲	げモーメ	ント(kgf・m	m)	せん断	カ(kgf)	軸力
前輪鉛直	INO.	番号	特性	面内始点	面外始点	面内終点	面外終点	面内	面外	(kgf)
	1	50202	1	3	3	4	4	0.0	0.0	-0.1
	2	50303	1	7	7	9	9	-0.1	-0.1	0.0
	3	50404	1	20	20	25	25	-0.2	-0.2	-0.8
	4	50505	1	32	32	40	40	-0.4	-0.4	4.4
	5	50606	1	869	869	1021	1021	-7.6	-7.6	-737.6
	6	50607	1	-869	869	-1021	1021	7.6	-7.6	-737.6
	7	50508	1	-32	32	-40	40	0.4	-0.4	4.4
	8	50409	1	-20	20	-25	25	0.2	-0.2	-0.8
	9	50310	1	-7	7	-9	9	0.1	-0.1	0.0
	10	50211	1	-3	3	-4	4	0.0	0.0	-0.1
type2	No	要素	要素	田	げモーメ	ント(kgf・m	m)	せん断	力(kgf)	軸力
前輪捩り	INO.	番号	特性	面内始点	面外始点	面内終点	面外終点	面内	面外	(kgf)
	1	50202	1	-15	12	-20	16	0.2	-0.2	0.1
	2	50303	1	-18	13	-24	16	0.3	-0.2	0.0
	3	50404	1	-16	8	-20	10	0.2	-0.1	0.0
	4	50505	1	-13	3	-17	4	0.2	-0.1	0.1
	5	50606	1	38	6	41	8	-0.2	-0.1	2.1
	6	50607	1	38	-6	41	-8	-0.2	0.1	-2.1
	7	50508	1	-13	-3	-17	-4	0.2	0.1	-0.1
	8	50409	1	-16	-8	-20	-10	0.2	0.1	0.0
	9	50310	1	-18	-13	-24	-16	0.3	0.2	0.0
	10	50211	1	-15	-12	-20	-16	0.2	0.2	-0.1
type2	No	要素	要素	曲	げモーメ	ント(kgf・m	m)	せん断	カ(kgf)	軸力
後輪水平	110.	番号	特性	面内始点	面外始点	面内終点	面外終点	面内	面外	(kgf)
	1	50202	1	-1572	-134	-2093	-182	26.0	2.4	38.0
	2	50303	1	-2533	-175	-3231	-224	34.9	2.4	-8.2
	3	50404	1	-2637	-138	-3371	-177	36.7	1.9	0.7
	4	50505	1	-2842	-112	-3637	-143	39.8	1.5	0.3
	5	50606	1	-2938	-18	-3801	-24	43.1	0.3	-1.2
	6	50607	1	-2958	-5	-3830	-6	43.6	0.1	0.2
	7	50508	1	-2888	34	-3702	44	40.7	-0.5	-0.6
	8	50409	1	-2697	101	-3449	129	37.6	-1.4	-0.5
	9	50310	1	-2564	180	-3271	230	35.3	-2.5	8.4
	10	50211	1	-1553	180	-2068	243	25.8	-3.1	-38.6
type2	No	要素	要素	曲	げモーメ	ント(kgf・m	m)	せん断	カ(kgf)	軸力
後輪鉛直	110.	番号	特性	面内始点	面外始点	面内終点	面外終点	面内	面外	(kgf)
	1	50202	1	3	6	5	8	-0.1	-0.1	-0.2
	2	50303	1	9	16	12	20	-0.1	-0.2	0.2
	3	50404	1	9	60	12	73	-0.2	-0.7	0.5
	4	50505	1	27	751	36	886	-0.4	-6.7	-40.4
	5	50606	1	-85	838	-97	985	0.6	-7.4	-779.7
	6	50607	1	0	815	0	959	0.0	-7.2	-768.4
	7	50508	1	-53	789	-64	931	0.6	-7.1	-35.1
	8	50409	1	-9	-60	-12	-65	0.2	0.3	7.4
	9	50310	1	-17	9	-22	14	0.2	-0.2	0.7
	10	50211	1	-8	10	-11	14	0.1	-0.2	-0.4

表 2.3.3-4 type2 の最上部要素の部材カー覧

type2	Ma	要素	要素	曲	げモーメ	ント(kgf・m	m)	せん断	力(kgf)	軸力
前輪水平	INO.	番号	特性	面内始点	面外始点	面内終点	面外終点	面内	面外	(kgf)
	1	10202	1	368	2	-349	-2	14.3	0.1	23.5
	2	10303	1	367	1	-352	-1	14.4	0.0	11.5
	3	10404	1	364	0	-356	-1	14.4	0.0	4.2
	4	10505	1	363	0	-359	-1	14.4	0.0	1.4
	5	10606	1	363	0	-360	0	14.4	0.0	0.7
	6	10607	1	363	0	-360	0	14.4	0.0	-0.7
	7	10508	1	363	0	-359	1	14.4	0.0	-1.4
	8	10409	1	364	0	-356	1	14.4	0.0	-4.2
	9	10310	1	367	-1	-352	1	14.4	0.0	-11.5
	10	10211	1	368	-2	-349	2	14.3	-0.1	-23.5
type2	No	要素	要素	曲	げモーメ	ント(kgf・m	m)	せん断	カ(kgf)	軸力
前輪鉛直	INO.	番号	特性	面内始点	面外始点	面内終点	面外終点	面内	面外	(kgf)
	1	10202	1	6	6	6	6	0.0	0.0	22.2
	2	10303	1	8	8	8	8	0.0	0.0	2.0
	3	10404	1	15	15	15	15	0.0	0.0	-30.3
	4	10505	1	25	25	26	26	0.0	0.0	-91.0
	5	10606	1	21	21	21	21	0.0	0.0	-180.2
	6	10607	1	-21	21	-21	21	0.0	0.0	-180.2
	7	10508	1	-25	25	-26	26	0.0	0.0	-91.0
	8	10409	1	-15	15	-15	15	0.0	0.0	-30.3
	9	10310	1	-8	8	-8	8	0.0	0.0	2.0
	10	10211	1	-6	6	-6	6	0.0	0.0	22.2
type2	No	要素	要素	曲	げモーメ	ント(kgf・m	m)	せん断	カ(kgf)	軸力
前輪捩り	NO.	番号	特性	面内始点	面外始点	面内終点	面外終点	面内	面外	(kgf)
	1	10202	1	7	-7	-7	7	0.3	-0.3	0.1
	2	10303	1	5	-5	-5	5	0.2	-0.2	0.1
	3	10404	1	4	-4	-4	4	0.2	-0.2	0.0
	4	10505	1	2	-2	-2	2	0.1	-0.1	0.1
	5	10606	1	1	-1	-1	1	0.0	0.0	0.0
	6	10607	1	1	1	-1	-1	0.0	0.0	0.0
	7	10508	1	2	2	-2	-2	0.1	0.1	-0.1
	8	10409	1	4	4	-4	-4	0.2	0.2	0.0
	9	10310	1	5	5	-5	-5	0.2	0.2	-0.1
	10	10211	1	7	7	-7	-7	0.3	0.3	-0.1
type2	No	要素	要素	曲	げモーメ	ント(kgf・m	m)	せん断	カ(kgf)	軸力
後輪水平		番号	特性	面内始点	面外始点	面内終点	面外終点	面内	面外	(kgf)
	1	10202	1	920	4	-873	-3	35.9	0.1	58.1
	2	10303	1	916	2	-880	-2	35.9	0.1	28.2
	3	10404	1	910	1	-890	-2	36.0	0.1	10.1
	4	10505	1	906	0	-897	-1	36.1	0.0	2.9
	5	10606	1	905	0	-901	0	36.1	0.0	1.5
	6	10607	1	905	0	-901	0	36.1	0.0	1.1
	7	10508	1	907	0	-897	0	36.1	0.0	-1.3
	8	10409	1	911	-1	-890	1	36.0	0.0	-9.8
	9	10310	1	917	-2	-880	3	35.9	-0.1	-28.8
	10	10211	1	921	-4	-871	4	35.9	-0.2	-59.5
type2	No.	要素	要素	曲	げモーメ	ント(kgf・m	m)	せん断	カ(kgf)	軸力
後輪鉛直	110.	番号	特性	面内始点	面外始点	面内終点	面外終点	面内	面外	(kgf)
	1	10202	1	11	14	12	15	0.0	0.0	45.7
	2	10303	1	15	19	16	20	0.0	0.0	2.9
	3	10404	1	26	33	26	34	0.0	0.0	-63.6
	4	10505	1	40	54	40	55	0.0	0.0	-181.3
	5	10606	1	30	34	31	34	0.0	0.0	-323.8
	6	10607	1	1	36	1	37	0.0	0.0	-347.7
	7	10508	1	-22	69	-23	71	0.0	0.0	-232.0
	8	10409	1	-24	50	-25	51	0.0	0.0	-99.4
	9	10310	1	-18	31	-19	32	0.0	0.0	-9.0
	10	10211	1	-16	24	-16	25	0.0	0.0	55.2

表 2.3.3-5 type2 の最下部要素の部材カー覧

7) 断面検定

(1) type1 の断面検定結果

(a) type1の柱頭の断面検定結果

断面検定に当たり曲げ強度及び圧縮強度の衝撃係数 F を F=1.2 として検定している。この値は当該設備が車両の下に設置されるので車両の移動に伴う 衝撃荷重係数は必要と考える。要素毎の断面検定結果を表 2.3.3-6~表 2.3.3-7 に示す。検定は曲げモーメントを断面係数と軸力を断面積で割った値を 各々の強度で割った値が許容値1以下であれば良いとしている。

表 2.3.3-6 type1の柱頭の断面検定結果(その1)

	H (mm)	t (mm)	A (mm^2)	l (mm^4)	Z (mm^3)	L (mm)				2
*3	26	3.0	216.77	14578	1121.4	2 00.0				
せら	力断面札	贪定								
1		.)⊞	ザモーメン	J-M(N-r	տա)	せん野	ДQ(N)	軸力N	捩りモーメン	
	No.	面内始点	面外始点	面内終点	面外終点	面内	面外	(Z	$Mt(N \cdot mm)$	
頭	-	8	8	2	2	0.3	0.3	-0.1	0.0	
	2	32	32	41	41	-0.4	-0.4	-0.2	0.0	
諭的直	3	117	117	1 53	153	-1.8	-1.8	-4.0	0.0	
	4	114	114	72	2 <i>L</i>	2.1	2.1	35.1	0'0	
	5	6966	8966	14366	14366	-220.2	-220.2	-7165.8	0'0	
	9	-9963	9963	-14366	14366	220.2	-220.2	-7165.8	0.0	
	7	-114	114	-72	72	-2.1	2.1	35.1	0.0	-
	∞	-117	117	-153	153	1.8	-1.8	-4.0	0.0	
	6	-32	32	-41	41	0.4	-0.4	-0.2	0.0	
	10	8-	8	-2	2	-0.3	0.3	-0.1	0.0	
-	- IA	Ē	ザモーメン	J-M(N-r	nm)	せん野	ДQ(N)	軸力N	捩りモーメン	
	NO.	面内始点	面外始点	面内終点	面外終点	面内	面外	(N)	Mt(N·mm)	
頭	1	-2291	-499	-3401	-781	55.5	14.1	71.5	-3.2	
	2	-4500	-692	-6985	1111-	124.3	20.9	-5.8	-5.9	
自給直	3	-5190	-646	-8109	-1083	145.9	21.8	-2.5	-7.3	
+	4	-6466	606-	-10377	-1615	195.5	35.3	39.3	-11.8	
部水平	5	5505	9468	5022	13555	24.2	-204.4	-7035.6	-18.9	
	9	-14420	10457	-23709	15176	464.5	-235.9	-7296.0	-18.9	
	7	-6694	1137	-10521	1759	191.3	-31.1	30.9	-11.8	
	8	-5424	880	-8414	1388	149.5	-25.4	-5.6	-7.3	
	6	-4565	157	-7066	11 92	125.1	-21.8	5.5	-5.9	
	10	-2306	514	-3404	784	54 0	-13 5	-716	6 2-	

59 U / T-F*(U I	1 C (N/IIIII 58.5	1 D (N/ IIIIIZ) 61.51	1.2
ı ≿ m2) σ /f=F*(σι	たまた たて (N/mm	西い394/1×1×1×1×1×1×1×1×1×1×1×1×1×1×1×1×1×1×1×	斳 撃係数F

F*(σm/fb+σc/fc) 判定はσ/f<k:空白 σ/f<k:NGと表記

					σ /f <k: th="" ν<=""><th>JGと表記</th><th></th></k:>	JGと表記	
曲げら	む力度(N/	mm2)	=M/Z	軸応 力度 σ c=	ז/ ג	년 구	
面内始点	面外始点	面内終点	ÿ ¾′4	N/A(N/mm2)	0 / 1	ゴイ	
0.01	0.01	00.00	00.00	00'0	00.0		
0.03	0.03	0.04	0.04	00'0	00.00		
0.10	0.10	0.14	0.14	0.02	00'0		
0.10	0.10	90'0	90'0	0.16	0.01		
8.88	88'8	12.81	12.81	33.06	0.93		
8.88	88.88	12.81	12.81	33.06	0.93		
0.10	0.10	0.06	0.06	0.16	0.01		
0.10	0.10	0.14	0.14	0.02	00.00		
0.03	0.03	0.04	0.04	00'0	00.00		
0.01	10'0	00'0	00'0	00'0	00.0		
曲げら	む力度(N/	mm2)	Z/W=	軸応 力度 σ c=	ح / د	₽ Ţ	
面内始点	面外始点	面内終点	単洲松車	N/A(N/mm2)	0 / 1	ゴイ	
2.04	0.45	3.03	02.0	0.33	0.07		
4.01	0.62	6.23	66'0	0.03	0.12		
4.63	0.58	7.23	70.97	0.01	0.14		
5.77	0.81	9.25	1.44	0.18	0.18		
4.91	8.44	4.48	12.09	32.46	06.0		
12.86	9.33	21.14	13.53	33.66	1.10	NG	
5.97	1.01	9.38	1.57	0.14	0.19		
4.84	0.78	7.50	1.24	0.03	0.15		
4.07	0.67	6.30	1.06	0.03	0.12		
2.06	0.46	3.04	02.0	0.33	0.07		

(その2)
住頭の断面検定結果
type1 0
2.3.3-7
表

	(um) H	<u>v</u> (mm) +	(mm^0)	(/ Jum ^ /	\6~mm) Z	(mm)				衝撃係数日	曲げ強度 fb /N /mm ³	圧縮強度 fo(N/mm3)		י ען-פין ע שין-ניין ע
0														
O26*3		3.0	216. //	145/8	1121.4	200.0				1.2	61.51	58. 59		
<u>組合せ応</u> ,	力断面机	<u> </u>					•			4	•			
type1	Z	しました	ン イ イ	NW(N-1	mm)	せん野	ДQ(N)	軸	捩りモーメント	して「	<u> む力度(N/</u>	<u>mm2)</u> σm	=M/Z	軸応力度σc=
		面内始点匝	面外始 点	面内終点	面外終点	面内	面外	(N)	Mt(N·mm)	面内始点	面外始点	面内終点	面外終点	N/A(N/mm2)
柱頭	-	-59	48	66-	60	2.0	-0.6	0.6	0.2	0.05	0.04	0.09	0.05	00'0
	2	-67	73	-114	102	2.4	-1.5	-0.2	0.3	0.06	0.07	0.10	0.09	00'0
前輪鉛直	3	11	136	-17	180	1.4	-2.2	-3.9	0.3	0.01	0.12	0.02	0.16	0.02
+	4	-31	102	-176	51	7.2	2.6	35.6	0.5	0.03	60'0	0.16	0.05	0.16
前輪捩り	2	10217	10036	14514	14486	-214.9	-222.5	-7145.7	2.9	9.11	36.8	12.94	12.92	32.96
	9	-9708	9889	-14217	14246	225.5	-217.8	-7185.9	2.9	8.66	8.82	12.68	12.70	33.15
	7	-260	126	-320	93	3.0	1.6	34.7	0.5	0.23	0.11	0.29	0.08	0.16
	8	-223	98	-322	125	4.9	-1.3	-4.1	0.3	0.20	0.09	0.29	0.11	0.02
	6	-131	6-	-195	-21	3.2	0.6	-0.1	0.3	0.12	0.01	0.17	0.02	0.00
	10	-74	-32	-102	-57	1.4	1.2	-0.8	0.2	0.07	0.03	60'0	0.05	00'0
type1	Ň	利田	ボード	- PM(N · r	nm)	せん断	力Q(N)	軸力N	捩 リモーメント	曲げら	む力度(N/	mm2) 0 m	=M/Z	軸応力度 σ c=
	N0.	面内始点面	面外始点	面内終点	面外終点	面内	面外	(N)	Mt(N·mm)	面内始点	面外始点	面内終点	面外終点	N/A(N/mm2)
柱頭	1	1	19	-19	9	1.0	0.7	0.2	0.0	0.00	0.02	0.02	0.01	00'0
	2	19	73	11	92	0.4	-1.0	0.3	0.0	0.02	0.07	0.01	0.08	00'0
後輪鉛直	S	-89	369	-177	472	4.4	-5.2	6.3	0.0	0.08	0.33	0.16	0.42	0.03
	4	32	9036	-46	13122	3.9	-204.3	-401.0	-0.1	0.03	8.06	0.04	11.70	1.85
	5	-638	9620	-837	13844	10.0	-211.2	-7579.6	0.0	0.57	8.58	0.75	12.35	34.97
	9	16	9395	26	13495	-0.5	-205.0	-7515.8	0.0	0.01	8.38	0.02	12.03	34.67
	7	-320	9290	-408	13429	4.4	-206.9	-363.8	0.1	0.29	8.28	0.36	11.98	1.68
	8	91	-498	178	-654	-4.3	7.8	43.6	0.1	0.08	0.44	0.16	0.58	0.20
	6	-66	-17	-80	-31	0.7	0.7	4.7	0.1	0.06	0.01	0.07	0.03	0.02
	10	-40	24	-35	-2	-0.3	1.3	-0.7	0.0	0.04	0.02	0.03	0.00	00'0
type1	Ň	曲げ	モーメン	- HM(N · r	nm)	せん断	力Q(N)	軸力N	捩りモーメント	曲げら	む力度(N/	mm2)σm	=M/Z	軸応力度 σ c=
		面内始点 亘	面外始点	面内終点	面外終点	面内	面外	(N)	Mt(N·mm)	面内始点	面外始点	面内終点	面外終点	N/A(N/mm2)
柱頭		-5710	-1099	-8456	-1715	137.3	30.8	1 74.0	-7.0	5.09	0.98	7.54	1.53	0.80
	2	-11069	-1508	-17160	-2415	304.5	45.4	-12.8	-13.0	9.87	1.34	15.30	2.15	90'0
後輪鉛直	3	-12802	-1161	-19934	-1996	356.6	41.8	7.9	-16.9	11.42	1.03	17.78	1.78	0.04
+	4	-15092	7548	-23952	10686	443.0	-156.9	-394.9	-33.0	13.46	6.73	21.36	9.53	1.82
後輪水平	5	-19193	9377	-32066	13442	643.6	-203.3	-7579.9	-24.6	17.12	8.36	28.60	11.99	34.97
	9	-19071	9351	-32214	13426	657.2	-203.7	-7513.6	-25.1	17.01	8.34	28.73	11.97	34.66
	7	-16127	9758	-25633	14202	475.3	-222.2	-372.0	-41.4	14.38	8.70	22.86	12.67	1.72
	8	-13244	661	-20625	1224	369.0	-28.1	44.6	-25.6	11.81	0.59	18.39	1.09	0.21
	6	-11453	1645	-17738	2610	314.3	-48.2	18.9	-22.0	10.21	1.47	15.82	2.33	0.09
	10	-5548	1597	-8158	2453	130.5	-42.8	-181.6	-12.2	4.95	1.42	7.28	2.19	0.84

判

 σ/f

0.00 0.00 0.01

0.00 0.03

0.96

0.27

0.94

0.27

1.68

判

σ∕f

0.16 0.30

0.02 0.00 0.00

0.20 0.02 0.00

g ВN

1.27

0.04 1.82 34.97 34.66 1.72

1.27 0.48

0.36 0.31 0.16

0.21 0.09 0.84

0.35 0.45

判定はの/f<k:空白 の/f<k:NGと表記 σ /f=F*(σ m/fb+ σ c/fc)

判定

σ∕f

0.00 00.0

0.00 0.00 0.02

0.93 0.93

0.01

0.01 0.00

0.02 0.00 0.00

0.01

00.00

(b) type1の柱脚の断面検定結果

柱頭・柱脚の呼称は塩ビパイプの天端を柱頭、下端を柱脚としている。柱脚は曲げ応力度、軸応力度が共に小さく、 off の応力度比は全体的に小 さい。要素毎の断面検定結果を表 2.2.3-8~表 2.2.3-9 に示す。

表 2.3.3-8 type1の柱脚の断面検定結果(その1)

	H (mm)	t (mm)	A (mm^2)	(mm^4)	Z (mm^3)	(mm)				衝撃係数F	曲(げ強度 fb(N/mm2)	圧縮強度 fc(N/mm2)		σ /f=F*(σ m
O26*3	26	3.0	216.77	14578	1121.4	200.0				1.2	61.51	58.59		
組合せら.	力断面积	魚定					_							_
type1	4	Ē	デモーメン	- HM(N-1	mm)	する野	(N)Q(L	軸力N	捩りモーメント	した目	芯力度(N/	mm2)	Z/W=	軸応力度 σ c=
	No.	面内始点	面外始点	面内終点	面外終点	画内	面外	(Z	Mt(N·mm)	面内始点	面外始点	面内終点	面外終点	N/A(N/mm2)
柱脚	1	57	57	64	64	-0.1	-0.1	212.6	0.0	0.05	0.05	0.06	0.06	0.98
	2	<i>LL</i>	77	84	84	-0.1	-0.1	15.6	0.0	0.07	0.07	0.07	0.07	0.07
前輪鉛直	3	141	141	147	147	-0.1	-0.1	-297.6	0.0	0.13	0.13	0.13	0.13	1.37
	4	243	243	248	248	-0.1	-0.1	-882.6	0.0	0.22	0.22	0.22	0.22	4.07
	2	191	191	196	196	-0.1	-0.1	-1720.3	0.0	0.17	0.17	0.17	0.17	7.94
	9	-191	191	-196	196	0.1	-0.1	-1720.3	0.0	0.17	0.17	0.17	0.17	7.94
	7	-243	243	-248	248	0.1	-0.1	-882.6	0.0	0.22	0.22	0.22	0.22	4.07
	8	-141	141	-147	147	0.1	-0.1	-297.6	0.0	0.13	0.13	0.13	0.13	1.37
	6	-77	<i>LL</i>	-84	84	0.1	-0.1	15.6	0.0	0.07	0.07	0.07	0.07	0.07
	10	-57	57	-64	64	0.1	-0.1	212.6	0.0	0.05	0.05	0.06	0.06	0.98
type1		Ē	ザモーメン	- FM(N · I	mm)	おん野	力Q(N)	軸力N	捩りモーメント	曲げ」	芯力度(N/	mm2)	=M/Z	軸応力度 σ c=
	NO.	面内始点	面外始点	面内終点	面外終点	面内	一個	(N)	Mt(N·mm)	面内始点	面外始点	面内終点	面外終点	N/A(N/mm2)
柱脚	1	3656	73	-3373	49	140.6	0.5	431.9	-1.5	3.26	0.06	3.01	0.04	1.99
	2	3665	87	-3379	74	140.9	0.3	130.2	-1.6	3.27	0.08	3.01	0.07	09.0
前輪鉛直	3	3710	143	-3348	140	141.1	0.1	-249.2	-1.7	3.31	0.13	2.99	0.12	1.15
+	4	3798	240	-3269	243	141.4	-0.1	-862.2	-2.4	3.39	0.21	2.92	0.22	3.98
郡轅水平	2	3745	190	-3327	194	141.4	-0.1	-1710.8	-3.2	3.34	0.17	2.97	0.17	7.89
	9	3362	193	-3718	197	141.6	-0.1	-1729.8	-3.2	3.00	0.17	3.32	0.18	7.98
	7	3313	246	-3766	254	141.6	-0.2	-902.9	-2.4	2.95	0.22	3.36	0.23	4.17
	8	3428	138	-3641	153	141.4	-0.3	-346.0	-1.7	3.06	0.12	3.25	0.14	1.60
	6	3510	68	-3546	93	141.1	-0.5	-98.9	-1.6	3.13	0.06	3.16	0.08	0.46
	10	3542	42	-3500	78	140.8	-0.7	-6.7	-1.5	3.16	0.04	3.12	0.07	0.03

判

σ/f

0.10 0.08 0.09 0.23 0.15 0.10

0.15 0.23 0.06

0.07

/乍F*(σm/fb+σc/fc) 判定はσ/f<k:空白 σ/f<k:NGと表記

判

σ/f

0.02

0.00

0.03

0.17 0.17 0.09

0.03 0.00 0.02

-112-

	(mm / П	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	۷ (سس u)	(V Umu)	/ (متسر) 7	(mm)				衝撃係数F	曲げ強度 fp /N /mm3	圧縮強度		ייש /אם -ם / ש	, /fb+ at o	(=_)
			A (IIII Z)	I (IIIII 4)												
O26*3	26	3.0	216.77	14578	1121.4	200.0				1.2	61.51	58.59			判定はっ、	/f <k:铅口< td=""></k:铅口<>
組合せ 応:	力断面を	贪定													<u>σ /f<k: n<="" u=""></k:></u>	IGと表記
type1	Ň	曲い	ドモーメン	∕⊦M(N·r	nm)	せん断	力Q(N)	軸力N	捩りモーメント	曲げる	芯力度(N/	mm2) J m	=M/Z	軸応力度 σ c=	י, ד	년 북
	NO.	面内始点	面外始点	面内終点	面外終点	面内	面外	(N)	$Mt(N \cdot mm)$	面内始点	面外始点	面内終点	面外終点	N/A(N/mm2)	U / T	ゴイ
柱脚	1	1 25	-10	-2	1 30	2.6	-2.8	214.3	0.8	0.11	0.01	0.00	0.12	0.99	0.02	
	2	130	25	32	1 35	2.0	-2.2	16.6	6.0	0.12	0.02	0.03	0.12	0.08	0.00	
前輪鉛直	3	1 78	103	110	183	1.4	-1.6	-296.9	0.9	0.16	60'0	0.10	0.16	1.37	0.03	
+	4	265	221	226	270	0.8	-1.0	-882.0	0.9	0.24	0.20	0.20	0.24	4.07	0.09	
前輪捩り	5	1 99	184	1 89	203	0.2	-0.4	-1719.9	1.3	0.18	0.16	0.17	0.18	7.93	0.17	
	9	-184	199	-203	188	0.4	0.2	-1720.6	1.3	0.16	0.18	0.18	0.17	7.94	0.17	
-	7	-2.20	265	-271	226	1.0	0.8	-883.2	6.0	0.20	0.24	0.24	0.20	4.07	0.09	
	8	-103	178	-184	110	1.6	1.4	-298.2	0.0	0.09	0.16	0.16	0.10	1.38	0.03	
-	6	-24	129	-135	32	2.2	1.9	14.7	6.0	0.02	0.12	0.12	0.03	0.07	00.0	
	10	11	124	-130	-2	2.8	2.5	211.0	0.8	0.01	0.11	0.12	00.00	0.97	0.02	
type1	N.S.	ら曲	ドモーメン	-⊢M(N · r	nm)	せん野	ДQ(N)	NC年	捩りモーメント	曲げる	芯力度(N/	mm2)	Z/W=	軸応力度 σ c=	بر / د	1) F
	No.	面内始点	面外始点	面内終点	面外終点	面内	面外	ŝ	Mt(N·mm)	面内始点	面外始点	面内終点	面外終点	N/A(N/mm2)	0 / T	利
柱脚	1	107	136	120	151	-0.3	-0.3	436.9	-0.2	0.10	0.12	0.11	0.13	2.02	0.04	
	2	143	181	156	196	-0.3	-0.3	19.5	-0.2	0.13	0.16	0.14	0.17	0.09	0.01	
後輪鉛直	3	248	316	260	331	-0.3	-0.3	-626.3	-0.4	0.22	0.28	0.23	0.29	2.89	0.06	
	4	381	511	392	526	-0.2	-0.3	-1761.8	0.8	0.34	0.46	0.35	0.47	8.13	0.18	
	5	289	319	296	326	-0.1	-0.1	-3113.9	0.8	0.26	0.28	0.26	0.29	14.36	0.30	
	9	8	340	5	347	0.1	-0.1	-3344.3	0.0	0.01	0.30	0.00	0.31	15.43	0.32	
	7	-210	656	-221	673	0.2	-0.3	-2249.0	-1.0	0.19	0.59	0.20	0.60	10.38	0.22	
	8	-228	479	-241	499	0.3	-0.4	-976.9	0.6	0.20	0.43	0.22	0.44	4.51	0.10	
	6	-173	295	-185	316	0.3	-0.4	-101.3	0.7	0.15	0.26	0.17	0.28	0.47	0.02	
	10	-147	228	-159	250	0.2	-0.4	521.9	0.6	0.13	0.20	0.14	0.22	2.41	0.05	
type1	^{CN}	田口	ドモーメン	∕⊦M(N · r	nm)	せん断	力Q(N)	軸力N	捩りモーメント	曲げる	芯力度(N/	mm2)	=M/Z	軸応力度 σ c=	ל / ג	王
	.01	面内始点	面外始点	面内終点	面外終点	面内	面外	(N)	Mt(N·mm)	面内始点	面外始点	面内終点	面外終点	N/A(N/mm2)	- / 0	μ
柱脚	1	9102	173	-8477	117	351.6	1.1	974.6	-3.5	8.12	0.15	7.56	0.10	4.50	0.25	
	2	9108	205	-8503	1 72	352.2	0.7	299.7	-3.6	8.12	0.18	7.58	0.15	1.38	0.19	
後輪鉛直	3	9166	326	-8478	315	352.9	0.2	-509.9	-4.4	8.17	0.29	7.56	0.28	2.35	0.21	
+	4	9264	511	-8406	516	353.4	-0.1	-1716.4	-5.5	8.26	0.46	7.50	0.46	7.92	0.32	
後輩水平	5	9158	319	-8528	323	353.7	-0.1	-3090.0	-3.6	8.17	0.28	7.60	0.29	14.25	0.45	
	9	8880	340	-8818	347	354.0	-0.1	-3334.9	-4.5	7.92	0.30	7.86	0.31	15.38	0.47	
	7	8685	657	-9013	678	353.9	-0.4	-2273.9	-8.9	7.74	0.59	8.04	0.60	10.49	0.37	
	8	8705	474	-8971	514	353.5	-0.8	-1088.6	-5.3	7.76	0.42	8.00	0.46	5.02	0.26	
	6	8807	277	-8831	344	352.8	-1.3	-389.4	-4.8	7.85	0.25	7.88	0.31	1.80	0.19	
	10	88.59	195	-8740	203	352.0	0	-34.8	-4 7	7 90	0 17	977	0.26	0.16	016	

表 2.3.3-9 type1の柱脚の断面検定結果(その2)

(2) type2 の断面検定結果

(a) type2の柱頭の断面検定結果

要素毎の断面検定結果を**表 2.3.3-10〜表 2.3.3-11** に示す。検定は曲げモーメントを断面係数と軸力を断面積で割った値を各々の強度で割った値 が許容値1以下であれば良いとしている。 柱頭・柱脚の呼称は塩ビパイプの天端を柱頭、下端を柱脚としている。柱脚は曲げ応力度、軸応力度が共に小さく、 off の応力度比は全体的に小 さいが局部的に NG の箇所もある。

 $\sigma/f=F*(\sigma m/fb+\sigma c/fc)$

まっっっ_10_+//// 4/10 合け昭の斯西松ウは国 / み

表 2. 3.	3-10	type2 c	の柱頭の	の断画検	百能	(40	1			レート ノン オアレ	曲げ強度	圧縮強度
	H (mm)	t (mm)	A (mm^2)	I (mm^4)	Z (mm^3) [L (mm)				丁学 (未致)	fb(N/mm2)	fc(N/mm2)
O26*3	26	3.0	216.77	14578	1121.4	200.0				1.2	61.51	58.59
組合せ応	力断面和	後定					_					
type2	4	Ē	デモーメン	<u>いW(N-1</u>	mm)	せん野	ДQ(N)	軸力N	捩りモーメント	した	芯力度(N/	mm2)∂m:
	.0N	面内始点	百外始点	面内終点	面外終点	面内	面外	ŝ	Mt(N · mm)	面内始点	面外始点	面内終点
柱頭	-	26	26	35	35	-0.5	-0.5	-1.1	0.0	0.02	0.02	0.03
	2	70	70	89	89	-0.9	-0.9	0.0	0.0	0.06	0.06	0.08
前輪鉛直	3	194	194	240	240	-2.3	-2.3	-7.5	0.0	0.17	0.17	0.21
	4	318	318	396	396	-3.9	-3.9	43.3	0.0	0.28	0.28	0.35
	5	8523	8523	10010	1 00 10	-74.3	-74.3	-7233.8	0.0	7.60	7.60	8.93
	9	-8523	8523	-10010	1 00 10	74.3	-74.3	-7233.8	0.0	7.60	7.60	8.93
	7	-318	318	-396	396	3.9	-3.9	43.3	0.0	0.28	0.28	0.35
	8	-194	194	-240	240	2.3	-2.3	-7.5	0.0	0.17	0.17	0.21
	6	-70	70	-89	68	0.9	-0.9	0.0	0.0	0.06	0.06	0.08
	10	-26	26	-35	35	0.5	-0.5	-1.1	0.0	0.02	0.02	0.03
type2	Ĩ	Ì⊞	デモーメン	い)Mイイ	mm)	せん断	力Q(N)	車力N	捩りモーメント	曲げら	芯力度(N/	mm2) 0 m:
	.0N	面内始点	瓦外始点	面内終点	面外終点	面内	面外	(Z)	Mt(N · mm)	面内始点	面外始点	面内終 点
柱頭	1	-6154	-574	-8194	6 <i>L L</i> -	102.0	10.3	1 49.8	-4.5	5.49	0.51	7.31
	2	-9957	-697	-12701	-893	137.2	9.8	-32.7	-8.0	8.88	0.62	11.33
前輪鉛直	3	-10339	-454	-13220	-586	144.1	6.6	-3.1	-9.4	9.22	0.40	11.79
+	4	-11175	-340	-14318	-439	157.1	4.9	47.0	-13.7	9.97	0.30	12.77
討輪	2	131	8193	-1364	9601	74.7	-70.4	-7095.2	-19.8	0.12	7.31	1.22
	9	-16915	8852	-21383	10418	223.4	- 78.3	-7372.4	-19.8	15.08	7.89	19.07
	7	-11811	976	-15110	1231	165.0	-12.8	39.6	-13.7	10.53	0.87	13.48
	8	-10726	842	-13701	1067	148.7	-11.3	-11.9	-9.4	9.57	0.75	12.22
	6	-10098	838	-12879	1071	139.1	-11.7	32.7	-8.0	9.00	0.75	11.49
	ç	-6206	6.05	-876A	0/0	100 0	- 11 9	-1520	L N	553	0 EG	7 2 7

ß	0.22 0.25 0.25 0.25 0.25 0.23 0.24 0.16	0.15 0.15 0.22 34.01 0.18 0.18 0.15 0.15	0.80 0.52 0.39 9.29 1.10 0.95 0.95 0.76	11.33 11.79 12.77 1.22 19.07 13.48 13.48 11.49 11.49	0.62 0.40 0.30 7.31 7.89 0.87 0.75 0.75	8.88 9.22 9.97 9.97 0.12 15.08 10.53 9.57 9.50
	0.23	0.01	0.52	11.79	0.40	9.22
	0.22	0.15	0.80	11.33	0.62	8.88
	0.16	0.69	0.69	7.31	0.51	5.49
判定	σ∕f	N/A(N/mm2)	面外終点	重内終点	面外始点	面内始点
	00.0	0.01	0.03	0.03	0.02 支击	0.02 11115
	00.00	00.0	0.08	0.08	0.06	0.06
	0.00	0.03	0.21	0.21	0.17	0.17
	0.01	0.20	0.35	0.35	0.28	0.28
	0.86	33.37	8.93	8.93	7.60	7.60
	0.86	33.37	8.93	8.93	7.60	7.60
	0.01	0.20	0.35	0.35	0.28	0.28
	0.00	0.03	0.21	0.21	0.17	0.17
	00.00	00.0	0.08	0.08	0.06	0.06
	0.00	0.01	0.03	0.03	0.02	0.02
七千	U / T	N/A(N/mm2)	面外終点	面内終点	面外始点	面内始点
1 T	بر /E	軸応力度 σ c=	Z/W=	mm2) 0 m	む力度(N/	曲げる
NGと表記	σ /f <k: td="" ν<=""><td></td><td></td><td></td><td></td><td></td></k:>					
/f <k:铅白< td=""><td>判定はの</td><td></td><td></td><td>58.59</td><td>61.51</td><td>1.2</td></k:铅白<>	判定はの			58.59	61.51	1.2

2
9
Ψ
\sim
mΖ
шГ
統
Ē
Ϋ́Κ
14
固
羓
2
E C
司
柱
6
~
G,
ď
£-
-
-
င်္ပ
m.
2
表

/fc)	/Kk:空口 IGと表記	가 나 다 나 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다	ゴル											슈 莱	ゴイ											王王	ł.					NG	NG			
/fb+σc	判定 で /f <r></r>		U / T	0.00	00.00	0.01	0.01	0.86	0.86	0.01	0.01	0.01	00.0	ד/ ד	- / 0	00.00	0.00	0.01	0.19	0.89	0.88	0.19	0.02	0.00	0.00	ر / 1	- ` >	0.39	0.56	0.57	0.65	1.39	1.37	0.68	0.60	0.57
σ /f=F*(σ n	- - -	軸応 力度 σ c=	N/A(N/mm2)	00.00	00.00	0.03	0.20	33.28	33.47	0.20	0.04	00'0	0.01	軸応 力度 σ c=	N/A(N/mm2)	0.01	0.01	0.02	1.83	35.27	34.76	1.59	0.33	0.03	0.02	軸応力度 σ c=	N/A(N/mm2)	1.71	0.36	0.05	1.81	35.33	34.76	1.62	0.31	0.41
		Z/W=	面外終点	0.17	0.22	0.30	0.39	8.99	8.86	0.32	0.13	0.06	0.10	=M/Z	面外終点	0.07	0.18	0.64	7.75	8.61	8.39	8.14	0.57	0.12	0.12	=M/Z	面外終点	1.52	1.78	0.91	6.50	8.40	8.33	8.53	0.55	0 12
圧縮強度 fc(N/mm2)	58.59	mm2)∂ m:	面内終点	0.14	0.13	0.04	0.20	9.29	8.57	0.51	0.39	0.29	0.21	mm2)	面内終点	0.04	0.10	0.11	0.31	0.84	0.00	0.56	0.11	0.19	0.10	mm2)	面内終点	18.26	28.15	29.37	31.50	34.08	33.50	32.94	30.27	07 QC
曲(げ強度 fb(N/mm2)	61.51	5力度(N/	面外始点	0.13	0.17	0.24	0.31	7.66	7.55	0.26	0.10	0.05	0.08	芯力度(N/	面外始点	0.05	0.14	0.52	6.57	7.33	7.13	6.90	0.52	0.08	0.09	5カ度(N/	面外始点	1.11	1.39	0.69	5.59	7.16	7.09	7.20	0.36	1 25
衝撃係 数F	1.2	曲げら	面内始点	0.11	0.10	0.04	0.17	7.93	7.27	0.40	0.31	0.22	0.16	曲げる	面内始点	0.03	0.08	0.08	0.24	0.74	0.00	0.46	0.07	0.15	0.07	曲げる	面内始点	13.72	22.07	22.99	24.61	26.43	25.87	25.72	23.66	90 E7

(b) Type2の柱脚の断面検定結果

柱脚は曲げ応力度、軸応力度が共に小さく、 offの応力度比は全体的に小さい。要素毎の断面検定結果を表2.3.3-12~表2.3.3-13 に示す。

表 2.3.3-12 type1の柱脚の断面検定結果(その1)

		Ш														1					1	1					
	/fc)	/f <k:铅印< td=""><td>IGと表記</td><td>-) F</td><td>₹</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1) H</td><td>Ц Т</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></k:铅印<>	IGと表記	-) F	₹											1) H	Ц Т										
	/fb+σc,	判定はの	σ /f <k: n<="" td=""><td>ح / د</td><td>0 / 1</td><td>0.02</td><td>0.00</td><td>0.03</td><td>0.09</td><td>0.17</td><td>0.17</td><td>0.09</td><td>0.03</td><td>0.00</td><td>0.02</td><td>ז/ ע</td><td>- / 0</td><td>0.11</td><td>0.08</td><td>0.09</td><td>0.15</td><td>0.23</td><td>0.23</td><td>0.15</td><td>0.10</td><td>0.07</td><td>0.06</td></k:>	ح / د	0 / 1	0.02	0.00	0.03	0.09	0.17	0.17	0.09	0.03	0.00	0.02	ז/ ע	- / 0	0.11	0.08	0.09	0.15	0.23	0.23	0.15	0.10	0.07	0.06
	σ /f=F*(σ π			軸応力度σ c=	N/A(N/mm2)	1.00	0.09	1.37	4.12	8.15	8.15	4.12	1.37	0.09	1.00	軸応 力度 σ c=	N/A(N/mm2)	2.07	0.61	1.18	4.05	8.12	8.18	4.18	1.56	0.43	0.06
				EM/Z	面外終点	0.06	0.07	0.13	0.23	0.18	0.18	0.23	0.13	0.07	0.06	EM/Z	面外終点	0.04	0.06	0.12	0.22	0.18	0.19	0.23	0.14	0.08	0.07
王縮強度	c (N/mm2)	58.59		nm2)∂rm₌	面内終点	0.06	0.07	0.13	0.23	0.18	0.18	0.23	0.13	0.07	0.06	nm2)∂rm⁼	面内終点	3.00	3.01	2.98	2.91	2.96	3.33	3.36	3.25	3.15	3.11
<u>曲げ強度</u> []	⁻ b (N/mm2)	61.51		5力度(N/r	面外始点	0.05	0.07	0.13	0.22	0.18	0.18	0.22	0.13	0.07	0.05	s力度(N/r	面外始点	0.07	0.08	0.13	0.22	0.18	0.18	0.22	0.13	0.06	0.04
3. (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		1.2		曲げ応	面内始点	0.05	0.07	0.13	0.22	0.18	0.18	0.22	0.13	0.07	0.05	曲げ応	面内始点	3.27	3.28	3.31	3.39	3.35	2.99	2.95	3.06	3.13	3.17
				捩りモーメント	Mt(N·mm)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	捩りモーメント	Mt(N·mm)	-1.6	-1.5	-1.7	-2.4	-3.2	-3.2	-2.4	-1.7	-1.5	-1.6
				軸力N	(N)	217.8	19.6	-297.0	-892.6	-1767.1	-1767.1	-892.6	-2.97.0	19.6	217.8	軸力N	(N)	448.6	131.9	-255.5	-878.8	-1760.3	-1774.0	-906.5	-338.4	-92.8	-12.9
			_	(N)の仁	いりょう そうしょう そうしょう かくしょう しょう しょう しょう しょう しょう しょう しょう いんしょう しょう しょう しょう しょう しょう しょう しょう しょう しょう	-0.1	-0.1	-0.1	-0.1	1 [.] 0-	-0.1	-0.1	-0.1	-0.1	-0.1	力Q(N)	山面	9'0	8.0	0.2	0'0	-0.1	-0.1	-0.1	-0.3	-0.5	-0.7
	L (mm)	200.0		堀く中	包匣	-0.1	-0.1	-0.1	-0.1	-0.1	0.1	0.1	0.1	0.1	0.1	せん断	包匣	140.6	140.9	141.2	141.5	141.6	141.7	141.6	141.3	141.0	140.7
	Z (mm^3)	1121.4		mm)	面外終点	62	83	147	253	206	206	253	147	83	62	mm)	(面外終点)	47	72	140	247	205	208	259	154	93	17
	I (mm^4)	14578		・N)Mイイ	自動内終点	62	83	147	253	206	-206	-253	-147	-83	-62	・N)Mイイ	E 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	-3360	-3371	-3345	-3266	-3321	-3733	-3772	-3639	-3536	-3484
	A (mm^2)	0 216.77		デーチ	頁 面外始 点	9 59	80	144	0 250	202	202	0 250	144	80	9 59	げモーメ	<u> 同外始点</u>	1 75	06 t	5 148	7 249	3 201	t 203	7 251	140	5 70	44
	t (mm)	3 3. (検定	⊞	面内始点	26	80	14/	250	202	-202	-250	-144	-80	-26	⊞	面内始点	3671	3674	3715	3807	3758	3354	3307	3427	3515	3552
	H (mm)	2(い断面	2	NO.		2	e	4	2	9	7	8	6	10	Ž	Z	ļ	2	e	4	2	9	7	8	6	10
		O26*3	組合せ応	type2		柱脚		前輪鉛直								type2		柱脚		前輪鉛直	+	町輪 水 平					

	H (mm)	+ (mm)	(م (mm ² م)	(mm^^ A)	7 (mm ²)	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				衝撃係数	ー 由げ強度 も (N/mmo)	圧縮強度 fo(N/mm ⁰)		י / אין דאין א	م / 1 64 م م	(Ec)
+										,						+ + +
12	701 107 11 107	3.0 記	210.77	145/8	1121.4	200.0				Z. I	10.10	58. 5 9			 当 に よく と 	/KK:送日 にて来記
5		E E E E	デモーメン	- HM(N · n	nm)	せん野	ДQ(N)	軸力N	捩りモーメン	曲げ、	応力度(N/	mm2)	Z/W=u	軸応力度 σ c=	, 2	
	No.	面内始点	面外始点	面内終点	面外終点	面内	面外	(N)	$Mt(N \cdot mm)$	面内始点	面外始点	面内終点	面外終点	N/A(N/mm2)	0 / T	刊元
Γ	-	128	-8	-4	128	2.6	-2.7	218.9	0.8	0.11	0.01	0.00	0.11	1.01	0.02	
	2	133	28	31	134	2.0	-2.1	20.2	0.9	0.12	0.02	0.03	0.12	60'0	00'0	
直	3	182	107	110	184	1.4	-1.5	-296.5	0.0	0.16	0.10	0.10	0.16	1.37	0.03	
	4	273	228	231	275	0.8	-0.9	-892.1	1.0	0.24	0.20	0.21	0.25	4.12	0.09	
Ŀ	5	209	195	199	214	0.2	-0.4	-1766.8	1.4	0.19	0.17	0.18	0.19	8.15	0.17	
	6	-194	209	-213	199	0.4	0.2	-1767.5	1.4	0.17	0.19	0.19	0.18	8.15	0.17	
	7	-227	272	-275	231	1.0	0.8	-893.1	1.0	0.20	0.24	0.25	0.21	4.12	0.09	
•	8	-107	181	-184	110	1.6	1.4	-297.4	0.9	0.10	0.16	0.16	0.10	1.37	0.03	
<u> </u>	9	-27	132	-134	31	2.1	2.0	18.9	0.9	0.02	0.12	0.12	0.03	0.09	00.00	
<u></u>	10	6	127	-128	က –	2.7	2.6	216.7	0.8	0.01	0.11	0.11	00.00	1.00	0.02	
	νı	-) 田	ザモーメン	N/W(N·n	nm)	せん野	力Q(N)	軸力N	捩りモーメント	曲げ、	応力度(N/	mm2) 0 m	Z/W=u	軸応力度 σ c=	י/ ג	년 구
	N0.	面内始点	面外始点	面内終点	面外終点	面内	面外	(N)	Mt(N·mm)	面内始点	面外始点	面内終点	面外終点	N/A(N/mm2)	- / 0	늰뇬
_	1	111	142	117	148	-0.1	-0.1	447.9	-0.2	0.10	0.13	0.10	0.13	2.07	0.04	
	2	148	187	153	193	-0.1	-0.1	28.0	-0.3	0.13	0.17	0.14	0.17	0.13	0.01	
直	3	253	325	259	332	-0.1	-0.1	-623.7	-0.5	0.23	0.29	0.23	0.30	2.88	0.06	
	4	391	531	397	540	-0.1	-0.2	-1777.9	0.8	0.35	0.47	0.35	0.48	8.20	0.18	
	5	297	332	301	338	-0.1	-0.1	-3175.8	0.9	0.27	0.30	0.27	0.30	14.65	0.31	
	9	7	354	9	360	0.0	-0.1	-3409.9	0.0	0.01	0.32	0.01	0.32	15.73	0.33	
	7	-218	681	-223	692	0.1	-0.2	-2274.9	-1.1	0.19	0.61	0.20	0.62	10.49	0.23	
1	ω	-235	493	-241	502	0.1	-0.2	-974.4	0.6	0.21	0.44	0.22	0.45	4.50	0.10	
	6	-179	304	-185	313	0.1	-0.2	-88.4	0.8	0.16	0.27	0.16	0.28	0.41	0.01	
	10	-154	236	-158	246	0.1	-0.2	541.6	0.7	0.14	0.21	0.14	0.22	2.50	0.06	
	N N	上 田	デモーメン	<pre>>PM(N·r)</pre>	nm)	せん野	<u> </u> ДQ(N)	軸力N	捩りモーメン	曲ぼ	<u>応力度(N/</u>	mm2) 0 m	Z/W=u	軸応力度 σ c=	ر /f	当
	5	面内始点	面外始点	面内終点	面外終点	画内	面外	(X)	Mt(N·mm)	面内始点	面外始点	面内終点	面外終点	N/A(N/mm2)	- ` >	ł
		9138	178	-8440	114	351.6	1.3	1017.6	-3.7	8.15	0.16	7.53	0.10	4.69	0.26	
	2	9130	211	-8481	169	352.2	0.8	304.5	-3.6	8.14	0.19	7.56	0.15	1.40	0.19	
直	3	9177	337	-8469	316	352.9	0.4	-524.4	-4.5	8.18	0.30	7.55	0.28	2.42	0.21	
	4	9277	533	-8401	529	353.6	0.1	-1749.5	-5.5	8.27	0.48	7.49	0.47	8.07	0.33	
旪	5	9173	333	-8530	335	354.1	-0.1	-3161.5	-3.6	8.18	0.30	7.61	0.30	14.58	0.46	
	9	8886	354	-8826	359	354.2	-0.1	-3398.8	-4.5	7.92	0.32	7.87	0.32	15.68	0.48	
	7	8680	680	-9021	696	354.0	-0.3	-2287.9	-9.1	7.74	0.61	8.04	0.62	10.55	0.37	
	8	8702	486	-8967	516	353.4	-0.6	-1070.1	-5.3	7.76	0.43	8.00	0.46	4.94	0.26	
	6	8816	284	-8812	341	352.6	-1.1	-370.4	-4.7	7.86	0.25	7.86	0.30	1.71	0.19	
	10	8881	200	-8704	289	351.7	-1.8	-41.8	-4.9	7.92	0.18	7.76	0.26	0.19	0.16	

表 2.3.3-13 type2の柱脚の断面検定結果(その2)

8) まとめ

路面緑化ユニットを1ブロックの1m×1mを取出しFEMモデルを作成して構造的な 検討を行った。架構としては柱として外径26mm、肉厚3mm、長さ200mmの塩ビパイ プを10cm毎に配置し、下端をコンクリートベッドで固定する。そのベッドの上に客土 をポスト天端付近まで入れて上に植物を植込みポストと植物の保護材としてハニカム状 の保護マットを設ける構造である。

構造的の検討としては、ポスト天端に車両が乗った場合の安全性について検討した。 検討条件として次の様な設定をしている。

- ・この上に乗る車両は 20tf 車両までとして鋼道路橋設計示方書の値を用いる。
- ・場内速度は8km以下とする。
- ・場内ということで急発進・急停車は考慮せず、0.5 秒以上で所定の速度になるとする。
- ・前輪のハンドル操作による回転を捩り荷重として扱うにあたり路面とタイヤの摩擦 係数 $\mu \in \mu = 0.5$ とする。
- ・塩ビパイプの材料定数は実験結果の値を使用する。
- ・ハニカム状の保護マットは形状が未定なので剛性が塩ビパイプの 1/10 の面材として 扱う。
- ・解析ではポスト中間に、荷重分散と水平変形拘束用の材(頂部の面材と同等の部材) がある場合(type1)と無い場合(type2)について検討する。

検討結果は、変形の場合、表 2.2.3-14 に示すように水平の場合 type1 で 10mm 程度、 type2 で 18mm 程度である。鉛直時で 4.5~5mm で当然 type の差がない。ただし、水平 の場合車両の4輪は別々のマットに乗るから変形についてはさほど問題ないと考えられる。

山山筋占亦位	type1頂著	邻変位			type2頂音	郘変位			type2/
中天即息复位	δx(mm)	δy(mm)	δz(mm)	δvector	δx(mm)	δy(mm)	δz(mm)	δ vector	type1
前輪水平時	4.62	0.10	0.08	4.62	7.85	0.10	0.09	7.85	1.70
前輪鉛直時	0.17	0.17	-4.52	4.53	0.19	0.19	-4.72	4.73	1.04
前輪捩り時	0.16	-0.02	0.01	0.16	0.17	-0.02	0.01	0.17	1.06
後輪水平時	9.67	0.10	0.01	9.67	17.68	0.12	-0.01	17.68	1.83
後輪鉛直時	0.03	0.18	-5.06	5.07	0.00	0.19	-5.19	5.19	1.03

表 2.3.3-14 中央部の節点変位一覧

部材検定結果はtype1, type2ともにポスト頂部の中央部で鉛直+水平の組合せ荷重時に 最大値となり、応力度比 σ /f=1.27(type1)、 σ /f=1.39(type2)となる。この値を1以下にす る方法としてはポスト間隔を小さくするのが簡単であるが、上部に配置する保護マットの 配置により現在 1m×1m の範囲をもっと広い範囲で水平力を負担できれば現状の 10cm 間 隔でも良いと考えられる。

FEM 解析の結果、路面緑化ユニット構成の実現、可能性があることが分かった。 これらの FEM 解析結果をベースに、今後の実用化に向けたプロジェクトに取り組む。

第3章 維持管理システムの検討

3.1 水分監視システムの検討

路面緑化に供する地被植物にとって生育に最も必要な要因は水、光、空気、土壌で ある。水は植物体の90%以上を占めるもので、水分不足は即枯死につながる。根から 吸収した水分は、養分の植物体内の隅々までの運搬や光合成活動への関与など植物体 内で重要な働きをする。水分の吸収は根毛で主に行われ、土壌中に張り巡らされた根 の先端付近に密集する根毛は大面積となり、土粒子の間隙に付着する水分や溶存無機 物の吸収を行う。水分の枯渇は根毛に与えるダメージが大きく、植物体の衰弱にすぐ に影響することになる。このように水分を適切に継続的に植物に供給することが、植 物体の健全な生育を確保する上で実に重要な課題となる。

農作物での水分管理は研究事例が多いが、造園植物でのそれは多くは無い。ここで は、造園植物の水分管理について考察した結果について記述する。

3.1.1 造園植物の水要求量

植物が必要とする水の量(地被植物の例)は一般に下記の式で求められる。

<u>PET×植物係数</u>

灌水効率

PET: Potential evapotranspiration (mm/day) (最寄りの測候所・気象台で入手可)

PETは最寄りの測候所や気象台で入手可能なものであり、一日の植物の水の消費 量である。下記に葉面性の違いによる水分消費量の違いを示す。

EX. 平均気温20-28℃、湿度50%以上の時
 葉面積大の植物 10mm/day
 葉面積中の植物 7.8mm/day
 葉面積小の植物 5mm/day

植物係数とは、緑色藻類を1とした時の各植物の相対的水要求量を示す値であり、下 記の係数が与えられている。

> 柑橘類(0.-06)、落葉性果樹(0.6-0.7) 灌木(0.7-0.8)、地被・花卉類(0.8-1.0)

芝生(0.7-0.9)

灌水効率とは、灌水システムの水損失率であり、現在多く用いられている点滴ホー スの灌水効率はかなり高いものとなっている。

点滴灌水(0.9-0.97)

造園の高木植物が必要とする水の量は下記の式で求められる。

<u>PET×樹冠面積×植物係数</u> 灌水効率

樹冠面積とは、地面に投影された面積×補正係数(=植物の露光係数)で表す。補正係数は下記の数値を用いる。

補正係数:	樹高	(m)	:	樹冠径	(m)	\Rightarrow	補正係数
		1	:	1			1.00
		2	:	1			1.08
		3	:	1			1.13
		4	:	1			1.17
		5	:	1			1.20

3.1.2 計算例

以下に地被植物と高木が必要とする水分量の計算例を示す。

① 芝生の夏季の水要求量の計算

夏の平均気温	30°C
相対湿度	35%
PET/day	8.7mm
植物係数	0.9
灌水効率	0.95(ドリップ灌水)

必要灌水量 8.7×0.9 = 8.24 mm/day 0.95

暑い夏の晴天時に、芝生は1日1m²当たり8.24リットルの水を消費する計算になる。 ② 立ち木の夏季の水要求量の計算

夏の平均気温	30℃
相対湿度	35%
樹冠面積	$3.14m^2$
樹冠投影直径	2 m
露光係数	1
樹高	1.5m
PET/day	11.2mm
植物係数	0.35
灌水効率	0.95(ドリップ灌水)

必要灌水量	$0.35 \times$	$3.14 \times$	11.2	=	12.8mm/day
		0.95			

このように立ち木の場合、夏の暑い1日は1m²当たり8.24リットルの水を消費する計算になる。

3.1.3 路面緑化ユニット必要とする水の量の算定

試験区での必要灌水量を上記の式を用いて 推定を以下に試みた。

夏の平均気温	30°C
相対湿度	35%
PET/day	8.7mm
植物係数	0.9
灌水効率	0.95(ドリップ灌水)

必要灌水量

<u>8.7×0.9</u> = 8.24mm/day 0.95

写真 3.1.3-1 試験区の平面配置

路面緑化ユニットは、薄層で用いられる場合が多い。その場合、灌水は不可欠と考 えられるが、今回本研究で得られた路面緑化ユニット(t=200)で、散水は必要なのだ ろうか。上記の計算を基に検討する。

路面緑化ユニット内土壌水分量を計算する。 使用する土壌は、有効水分量の最も多い真珠岩^{パーラ(ト}とする。

真珠岩^{n°}-54^ト(有効水分量256 1/m³) 厚み20cmの有効水分量は 200/1000×256=51.2 1/m²

厚み20cmの土壌中に約51% /m²の有効水分を保持しているのであるが、暑い一日の芝の水要求量は8.24% /m²なので、真夏日が連続する場合は6日程度で使い切ることになる。

真夏日が連続する場合 51.2÷8.24=6.2 *6.2日で有効水分を使い切る(!?)

近年都市部での、真夏日の日数は増える一方である。しかも連続する日数も増加している。連続真夏日40日の場合の水要求量をみると約330%2/m²にもなることが判る。

連続真夏日40日の場合

芝生の必要灌水量は

8.24×40= 329.6 1/m² *6日に1度十分な灌水が必要

試験項目	単位	火山砂利	パーライト	焼き黒土
三相分布:気相率	V/ V%	32.8	44.4	43.5
三相分布:液相率	V/ V%	46.1	43.0	33.4
三相分布:固相率	V/ V%	15.7	12.6	23.1
粒径組成(国際法)	-			
飽和透水係数	cm/sec	$1.7 imes10^{-2}$	$5.8 imes10^{-3}$	$5.6 imes10^{\cdot1}$
有効水分(pF1.8-3.0)	l/m ³	132	252	26
$pH(H_2O)$	-	6.0	8.0	5.7
有効態りん酸 P2O5	mg/kg	66	<10	21
交換性カリウム K	cmol(+)/kg	1.04	0.13	0.17
腐植	g/kg	20.7	0.8	162
塩基交換容量(CEC)	cmol(+)/kg	7.4	3.3	35.1
りん酸吸収係数	g/kg	13.7	< 0.5	24.9
電気伝導度(EC)	ds/m	0.23	0.02	0.06
全窒素	g/kg	0.9	< 0.1	4.8

表3.1.3-1 実験に用いた用土ごとの物理性及び化学性分析結果

3.1.4 植栽地の水分管理方法

気候に関係なく定時定量の灌水を行うことが多い。しかし雨の日や風の強い日、曇 りの日や寒い日は植物の光合成による水分消費が極めて少ない。このような場合に、 センサーを用いて灌水量を制御することは維持管理の低減に有効である。

ただし、芝生でも生育量のばらつきなどがあるため、灌水の状況については定期的 な管理人の目視評価が必要である。センサーがあっても、目視の補助的なものと考え れば大きな失敗は免れると思われる。それぞれのセンサーの特徴を以下に示す。

① レインセンサー

レインセンサーは雨が降ってきた時、降っている間、降雨後に暫時散水システムを作 動させないために使用する。

② ウィンドセンサー

ウィンドセンサーは強風時(風速5.4m/秒~15.6m /秒)に散水システムを作動させない ために使用する。

③ フリーズセンサー

フリーズセンサーは気温が低下し、凍結が予想される場合(3℃以下)散水システムを 作動させないために使用する。

図 3.1.4-1 制御盤による年間プログラム灌水

図 3.1.4-2 センサーを用いたプログラム灌水

図3.1.4-3は路面緑化ユニットの試験体と灌水イメージである。赤〇部分が制御盤で ある。ここにセンサーからの信号を受け入れて、灌水の制御を適切に行う実証実験を 実施している。

図 3.1.4-3 路面緑化ユニットと試験体

3.2 排水再利用技術の検討

昨今のような夏場の高温・無降雨状態が続く気象条件において、無灌水で路面緑化 システムの健全な状態を維持するのは困難であり、何らかの形で植物に害のない水を 得て、灌水する必要がある。

通常、灌水のための水は水道水が用いられる。しかし、水道水は人が飲むことがで きるほど水質を良くするために、高度な技術とエネルギーをかけて浄化された水であ る。そのような水道水を路面緑化の灌水として利用すれば、路面緑化が環境に優しい 技術とは言えず、またランニングコストとしての水道料金についても、決して小さな ものではない。

そこで、建物内で使用し排出される水に着目した。建物からの排水を、ある程度の 浄化処理を行った後、灌水に利用できれば環境への貢献と同時にコストの軽減にもつ ながる。そこで、建物からの排水の再利用技術について検討を行った。

3.2.1 建物からの排水再利用

1) 排水再利用のイメージ

建物からの排水再利用のイメージは、図 3.2.1-1 に示す通りである。雨水や厨房排水、洗濯排水を集め、処理し所定の水質まで浄化した水を溜め、灌水に利用するという流れで ある。図では処理部分が Filtration System となっているが、灌水に必要な水質と水量を 確保でき、さらにコストを抑えることができる処理方法でなければならない。

図 3.2.1-1 建物からの排水再利用イメージ

2) 厨房排水と灌水利用時の水質

建物からの排水として、最も汚いと想定されるのは、厨房からの排水である。そこで、 竹中技術研究所食堂からの排水を分析し、灌水利用時に必要とされる水質(下水処理水循 環利用技術指針)との比較を行った。その結果を**表 3.2.1-1**に示す。

	項目	厨房排水 (竹中技研 12/2)	下水処理水 循環利用技術指針 (散水用水)
基準水質	大腸菌群数(個/mL) 残留塩素(mg/L)	0.08	検出されないこと 0.4以上
目標水質	外観 濁度 BOD(mg/L) 臭気 pH	白色濁り 245 223 下水臭 5.8	不快でないこと ー ー 不快でないこと 5.8~8.6
施設基準			砂ろ過施設または同等 以上の施設が必要

表 3.2.1-1 厨房排水と下水処理水循環利用水の水質比較

厨房排水については、濁度・BODとも高く、有機物によってひどく汚れた水であること が分かる。一方、下水処理水循環利用技術指針の値では、濁度・BODとも値の記述は無い 。しかし、大腸菌群数が検出されない程度に浄化しなければならないことから、有機物の 除去が必須である。

つまり、建物からの排水を再利用するには、有機物を除去できる浄化システムが必要で ある。ただし、灌水に必要な水量は数 m³程度であり、それを超える処理量の浄化システ ムではオーバースペックとなってしまうことを考慮しなければならない。

3) 既存の浄化技術

(1) 活性汚泥法

有機物を多く含む水の処理方法としては、下水処理場で広く採用されている活性汚泥法 が知られている。活性汚泥法とは、好気性微生物による有機物の分解で水を浄化する方法 であり、水処理フローを図 3.2.1-2 に示す。

まず流入した排水は、調整槽を経由して曝気槽に送られる。曝気槽内では好気性微生物 が有機物を分解しながら増殖し、好気性微生物同士がくっつき合って浮遊物(フロック) を形成する。その後、水が沈殿槽へ送られるとフロックが沈降し、フロックは汚泥として 排出処理され、上澄みの水が浄化された処理水として得られるという技術である。

活性汚泥法は、水処理にあたっては、送水用ポンプと曝気ポンプなどの動力のみ必要と し、特別な装置・機材を必要としないため、ランニングコストが抑えられる。また、もと もと水に含まれていた有機物が微生物の活動によって分離・処理されるため、最終的に排 出処理される汚泥の量は、排水流入時の有機物量と比較すると少なくなる。しかし、活性 汚泥法を運用していくには、好気性微生物を維持するために、ある程度の流入水が必要で ある。メーカーにもよるが、この方法での最小の水処理装置でも 20m³/day の水量が必要 である。灌水で使用するにはやや大きな処理量となるため、導入した場合はコストアップ になってしまう。

(2) ろ過

水に含まれる固形分などの物理的な除去方法として、ろ過がある。ろ過には、その材料 の違いから砂ろ過、ガラス繊維ろ過などがあり、方法によっては 10µm 程度の粒子まで除 去することが可能である。そのため、排水の濁り成分は十分な除去が可能である。しかし、 物理的な浄化機能しかないため、水中に溶解している有機物の除去には適さない。また、 ろ過工程で捕捉した固形分は逆洗浄操作によって排出処分することになるが、流入水質に よっては逆洗浄回数が多くなり、逆洗浄に用いる水量が増え、排出処分が必要な水量が多 くなってしまう。

(3) 膜処理

ろ過よりもさらに細かな物質を水中から除去できる方法として、膜処理がある。膜処理 では主に海水の淡水化や精製水の作成、ウイルス・コロイド物質・イオンの除去などに用 いられる。分離できる物質の大きさによって膜の種類が異なっており、以下のような分別 がなされている。

ろ過期	莫区分	分離サイズ	参考物質
一般ろ過		1∼1000µm	浮遊物質
精密ろ過	MF膜	0.1 ~ 150 µ m	大腸菌
限外ろ過	UF膜	0.002∼5µm	ウイルス、コロイド
逆浸透	RO膜	0.0003 ~ 0.005 μ m	イオン、農薬

表 3.2.1-2 膜処理の種類

膜処理を用いれば、排水処理時に問題となる物質を一気に除去することが可能である。 また、浄化する水量の調整は容易である。しかし、分離できるサイズが小さいために簡単 に閉塞しやすく、流入する水質によっては逆洗浄を頻繁に行わなければならない。また、 膜処理装置そのものが高価であるため、この方法のみで排水を処理するとした場合、極め て高価な灌水システムとなってしまう。

4) 灌水に適した排水浄化技術

(1) イスラエルの例

アジアの最西端の国、イスラエルは、中東に位置しており、地中海に面しているが降水 量が極端に少ない。そのような気候風土を背景に、イスラエルでの排水再利用の技術は日 本とは異なる進歩を遂げており、各世帯レベルでの排水の浄化処理装置に関しては、高い 技術力を有している。その例を図 3.2.1-3 および図 3.2.1-4 に示す。

図 3.2.1-3 小規模排水浄化装置フロー

図 3.2.1-4 ユニット部イメージ

上記排水浄化装置は、家庭排水を想定した処理装置であり、家屋庭先に埋設して使用す るものである。排水は一旦、油水分離槽にてトラップされた後、浄化ユニットへ流入する。 浄化ユニット内では、活性汚泥法のような曝気による処理と、膜処理のようなフィルター が配置されており、複数の浄化工程を経て浄化されることが分かる。このように、浄化技 術のメリットとデメリットを勘案して組み合わせることで、建物排水から灌水用水として 最適な水質・水量の水を得ることが可能になると考える。

(2) 浄化装置の導入

イスラエルでの例を踏まえ、類似の装置が厨房排水からの浄化装置として利用し、灌水 用水確保の手法として活用できないか確認するために、実際に装置を導入する。

以上のような装置を平成21年度試験施工区および平成22年度試験施工区において運用 し、灌水用水として適切かどうか、今後確認を行っていく。

3.3 太陽光エネルギー利用技術の検討

太陽光発電装置は環境にやさしいクリーンなエネルギーとして、その利用量が急増 している。太陽から地球に降り注ぐ光のエネルギーは膨大であり、「たった1時間の 日射量で、全人類が消費する1年間のエネルギーをまかなうことができる」(New ton2010年1月)という。太陽光は基本的にどこであろうが地球上全域にわた りその光のエネルギーを供給する。図3.3-1は変換効率の変化を示し、集光型では20年 間で2倍の変換効率を得る進展がある。

路面緑化システムは様々な動力を必要とする。駐車場の遮断機開閉動作や灌水用の ポンプ駆動、誘導灯等である。しかし路面緑化システムの適用場所は、動力電源が常 にある場所であるとは限らない。そこで本研究では、太陽光発電装置の導入を検討し た。

図3.3-1 変換効率の推移

3.3.1 高精度太陽方位追尾装置(1軸追尾装置)

太陽の動きに合わせてパネルを動かす(追尾)ことにより、発電量は大きくなる。 現在、追尾方式を採用した海外の商用太陽光発電プラントが増えている。ただし、パ ネルの固定式に比べて追尾型はどうしても駆動部分の機械装置が複雑になり、装置コ ストもかさむようになる。本研究では、二軸制御ではなく一軸制御の追尾方式を用い ることで大幅なコストダウンを図ることが可能となった。

太陽光の追尾はセンサーを用いて行う(特許出願済)。太陽追尾には方位のみを追尾する 1 軸追尾と太陽高度をも追尾する 2 軸追尾があるが、年間を通じての最適傾斜角に太陽電 池パネルを設置すれば、1 軸追尾制御のコストパフォーマンスがはるかに勝っているので、 本研究では 1 軸追尾装置で実証することにした。

実験装置の写真を写真3.3.1-1~2、追尾センサーの構成を図3.3.1-1に示す。

写真3.3.1-1 研究施設屋上に設置した太陽光追尾型発電装置

図 3.3.1-1 センサー配置と太陽方向

写真 3.3.1-2 センサー設置状況

3.3.2 1軸であることの損失について

以下に1軸であることの損失について3点記述する。

①上下追尾しないため日陰部分ができ集光量が減少する。

パネルの長さを5m、リニアレンズの焦点距離を15cmとするとパネル面積に対する日 陰面積の比は北緯35°でパネル傾斜角を30°とすれば年間の日照時間を通じて約1.3%。 実際には日の出、日没時の太陽光エネルギーが小さいときの日陰率が大きく、日中の 太陽高度が高いときは日陰率が小さい。日陰率を太陽高度で重みづけすれば年間の太 陽光エネルギー損失率はもっと小さくなり、2軸追尾と比較してほとんど遜色がない。 現実には2軸追尾では通常のフレネル太陽光レンズを使うので、それと比較すれば リ ニアレンズの方が配置密度を大きくすることができるのでレンズを通した集光量は1 軸追尾の方が返って大きい。

図3.2.2-3 日陰による集光量減少

②太陽光に直面しない効率低下

太陽光パネルの傾斜角を設置緯度と同じにし、春分・秋分の南中時に太陽に直面す るようにする。太陽光強度を太陽高度に比例するとして重みづければ2軸追尾と比較 して発電低下量は冬季で15.4%、春秋季4.5%、夏季で5%程度である。冬季における 発電量のウエイトは小さいので年間を通じての発電量の低下は6.5%程度であり、上下 方向の追尾をしなくても損失量は小さい。

③太陽電池セルの必要面積が大きい。

幅15cmのリニアレンズで焦点距離15cmとし、幅4mmの直線像を結ばせれば集光比は75 であるが直径15cm、焦点距離15cmのレンズで直径4mmの像を結ばせれば集光比5625とな る。セルの大きさを幅5mm角とすれば、この場合リニアレンズでは30倍のセルが必要と なる。このため、1軸追尾では極端に高価なセルを使用することはできない。

3.3.3 利用イメージ

本研究では、生活排水を浄化し散水用に活用するシステムの動力源として太陽光発 電装置を利用することを想定する。

太陽光パネルで集められたエネルギーは、バッテリーに充電された後、定時定量の 灌水装置駆動に利用される。制御盤による灌水の年間コントロールであり、厨房排水 を浄化した水を灌水に用いることができる。

第4章 路面緑化適用ガイドライン

4.1 路面緑化の主な効果

都市化の進行に伴うヒートアイランド現象は関心の高い環境問題であり、「ヒートアイ ランド対策大綱」(平成16年度策定)を踏まえて、国や自治体を挙げて総合的な対策を推進 している。自治体や事業者の取り組みの一つとして「駐車場の舗装改善」ある。しかしな がら、駐車場の緑化は、耐久性や芝生の管理などの技術的な課題が解決されておらず、長 期間にわたり健全な状況で維持している事例はほとんど無い状況にある。(兵庫県「グラス パーキング推進事業」実証実験H17年度~H18年度)

また、工場や倉庫の建替え計画は多いが、工場立地法適用以前の建物は建替えに伴う緑 地面積確保が課題となり、郊外移転があとを絶たない。2004年3月の工場立地法改正に伴 い、東京都は屋上と壁面緑化を緑地面積に算定可能としたが、工場屋根特有のスレート屋 根や折半屋根の荷重制限や壁面緑化の技術的な困難さのために、行政的な後押しにも関わ らず緑化面積は増加していない。路面の緑化が緑地面積に算定可能と判断されると、工場 の建替え需要に大きく貢献すると考えられる。

市街地の歩道は夏季高温になり、老人・子供・妊婦・身障者などの社会的弱者に過酷 な歩行環境を強いる状況となっている。歩行環境としては電柱と共存する街路樹は棒 状に刈り込まれ、緑陰をほとんど提供できていない。人々は建物の影を選んで歩行せ ざるを得ない状況となっている。路面の熱負荷低減は都市環境における社会的弱者保 護上の急務の課題となっている。特に歩道の緑化は人々の暮らしに直接貢献する都市 環境改善のニーズとなっている。

図4.1-1 舗装面の緑地化による各種弊害の軽減

路面電車は、全国 18 都市 19 事業者、路線延長約 235km で営業されている。全国 19 箇 所の路面電車のうち、広島、大津、高知、鹿児島の4都市で実績があるが、いずれも短い 区間で試験的に行われている状況。良好な視環境の形成と熱負荷低減も視野に入れた軌道 敷緑化は今後増加することが予想される。

夏季の炎天下の路面は、60℃を超える表面温度となるが、植栽面はどんなに温度が上が っても40℃を超えることは無い。暑い日中は植物体自身を冷やす目的もあり、活発な蒸 散作用を行うが、冬季はもちろん曇天や雨天時はほとんど蒸散せず、大気中の温度と水分 を自動調節してくれる。この植物の持つ環境調節機能を路面で活用し、環境負荷の低減と (アスファルト舗装面の熱負荷低減、雨水浸透による流出抑制等)、良好な街並み景観の創 出を目的に、路面(歩道、街路、駐車場、軌道敷、緊急車両進入路など)で地被植物が健全 に生育する緑化システムを考案した。

ここでは、実用化に向けた路面緑化に関するガイドラインの設定を行う。

駐車場(SC他)

工場内の歩車道

路面電車軌道敷

市街地の駐輪場

図 4.1-2 路面緑化の対象となる施設
4.1.1 路面緑化とは

(1) 定義

路面緑化を「コンクリートやアスファルトで被覆された歩車道等の表面を、路面の機能 を損なわず植物を用いて被覆すること」と定義する。

目的・効果

上記の定義にしたがえば、歩車道としての機能を目的とした路面でありながら、植物で 被覆されているため、以下の3つの効果が得られる。

- ①植物及び植栽基盤からの蒸散・蒸発作用により路面への蓄熱がないため、都市のヒートアイランド化の抑制に寄与する。
- ②雨水の地下浸透が促進され、都市型洪水の発生防止に寄与する。

③無味乾燥の視環境に、緑による癒しと潤いの景観が付与される。

(3) 工法と特徴

駐車場の緑化は、主に下記の2点の、耐久性や芝生の管理などの技術的な課題が解決されておらず、長期間にわたり健全な状況で維持している事例はほとんど無い状況にある。

- ①繰り返しのタイヤ圧に耐える芝生保護構造が無い。
 - 車両のタイヤ圧で植物保護材が沈み込み、芝の生長点がつぶれて枯死に至る。また長 期的には根圏土壌の固結が起こり、根の生育が困難になる。これは永久的な芝生の生 育困難を招く。結果として、裸地化と路面の凸凹化、水溜り発生などの不具合が発生 する。

②沈み込み防止を狙った芝生保護資材は、大型の構造物であり歩行には適さない。

上記の不都合を克服するために、沈み込みの無い芝生保護構造と無灌水でも芝生の生育 が可能な土壌厚さを確保した構造よりなる構成となっている。芝生保護構造は芝の生長点 をタイヤや歩行者の靴底から保護するとともに、土壌の固結化を防止するため健全な芝が 長期にわたり維持可能となる。無灌水仕様での土壌の厚さは20cmである。それ以下の土 壌厚さで緑化する場合は灌水装置(スプリンクラーやドリップ灌水など)を設置する。

本工法は、繰り返しのタイヤ圧に耐える芝生保護構造を有し、その保護構造が土中に沈 み込まないことを特徴とするものである。図4.1.1-1参照。構成は、図4.1.1-1のように コンクリート板に土壌の固結を防止する骨組みを一体化させ、骨組みの上面には芝生保護 構造を取り付ける。ユニットには大きな空間が設けられるため、この部分に客土材を充て んする。コンクリート板は保水する窪みと排水する穴を有する。コンクリート板の保水量 を多くすることで客土量を少なくすることも可能となる。芝生保護材の下面まで客土を入 れた後、芝の種子を播き、覆土して施工は完了する。

図 4.1.1-2 解析に用いた路面緑化ユニットのイメージ図

(4) 従来工法との関係

芝生保護材等により補強を行うものと特殊な土壌等により芝生保護を行うものとが ある。本工法は芝生保護材等による補強に属するものである。表 4.1.1-1 に位置づけ を示す。

1) 芝生保護材等による補強

①車輪部をブロックや木材で補強したもの

車両の走行部をブロックや木材で補強し、走行部と目地部以外の部分を芝生で覆う。 ②全体を強化プラスチックマットで補強したもの

区画全体を網状に成形されたプラスチック製のマットで補強し、全体を芝生で覆っ たもの。突起区画全体を強化プラスチックで構造的に補強し、全体を芝生で覆う。

特殊な土壌等による芝生の保護

耐圧基盤土壌等を使用することにより、区画全面を芝生化したもの。

		芝生保護材	による補強		土壌による補強
工法種別	車輪部補強型 (ブロック、木材)	全体強化プラスチック マット型	全体均一補強型 (ブロック、木材)	全体均一強化プラス チック構造型	全面芝生型
全景写真					
緑化可能率	約50%~80%	約60%~95%	約40%~70%	約80%~90%	100%
步行感	段差、芝がふかふか	つまずきやすい	凸凹がある	歩きやすい	歩きやすい
タイヤ圧の影響	受けにくい (補強部)	受けやすいものが多い	受けにくい	受けにくい	最も受けやすい
その他	・補強材料は様々	 ・補強材料は様々 ・施工事例は多い ・施工費が比較的安価 なものがある 	・補強材料は様々	・施工事例はない ・施工費が比較的安価	・施工事例は少ない ・施工費が比較的安価

表 4.1.1-1 路面緑化工法比較 ¹⁾

4.1.2 計画

(1) 路面緑化の計画に当たって

路面緑化の計画にあたっては、適用場所の条件の把握と工法の選定が緑化の成否を分け ることとなるため、適用場所の日照条件や利用形態・頻度・維持管理等の条件に応じて、 緑化部分が最大となる計画とすることが望ましい。

図 4.1.2-1 路面緑化の計画

(2) 計画の留意点

路面の緑化への取り組みは、少ない事例だが、古いものでは 10 年を超えるものが ある。時間が経過することで不具合が目立つようになる。コンクリートやセラミック による事例では、芝の損耗が激しく、雑草の繁茂や裸地化が顕著で、芝生の生育と舗 装面のバランスが崩れ、駐車場緑化とはいえない状況を呈している。また、駐車場緑 化の問題として避けられない車の轍部の損耗や保護材の破壊・陥没がみられる。植物 保護材の破損や客土部分の踏圧による固結、さらに雑草侵入による見苦しい景観など で、何れも狙いとした緑化の目的からは良くない方向に推移した事例となっている。

多くの事例が、維持管理に手をかけず放置した状態が多くみられるが、このような 場合、芝生部分の枯損や消失で、もはや緑化とは呼べない状況を呈している。維持管 理の重要性がここあるのだが、行政の助成措置に便乗する形や、義務的な緑地面積の 確保で緑化に取り組むようにみえる。屋上や壁面緑化の行政指導のはじまった初期の 状況に酷似した様相を呈している。

計画に当たり、上記の不備を十分に考慮した対応が望まれる。以下に留意点を述べる。なお、本研究で得られた路面緑化ユニットについては実証試験を十分に行ってい ないため留意点にどの程度該当するものかは今後の課題である。

1) 駐車場緑化工法適用上の留意点

コンクリートやセラミックのブロックを用いた事例では、ブロックは、舗装厚 8~ 10 c mが必要であり、舗装自体が芝の根の生育を阻害し、生育不良が起こりやすい。 表土の流出や芝の成長に伴う厚みの増加によって、ブロックと芝に段差が生じやすい ことも課題である。維持管理方法の確立での対応が必要と考える。 プラスチックの芝生保護材を用いた事例では、保護材自体への面的な荷重に対する強度は、クリアされている製品は多いが、その場での切り替えし等の曲げやせん断的な強度が確保されていないものが多い。また、プラスチック特有の紫外線による劣化が発生しやすい点が懸念される。

車輪部のみを保護材によって補強した事例では、車が直接乗る部分をブロックや木材 等で保護するので、植物の枯損はなくなるが植栽部分の面積が少なくなる欠点がある。 特殊な土壌で芝生を保護する事例では、車両の出入りが多いと、客土材の固結が容易に 起こり、轍部分の芝生の枯損が著しい。人による踏圧のため擦り切れや枯損が生じるこ とが多く、一般の駐車場としての利用には厳しいが、利用頻度の低い緊急目的の利用に は不都合はないと思われる。

2) 緑化効果を維持する上での留意点

路面を緑化する目的はさまざまであるが、対象となる面積が広大であるだけに効果に する期待も大きい。景観的には、アスファルトやコンクリート等の人工物に比べて、や わらかな印象として視認される。ただし、平坦な芝生地では景観の変化は望めない。ま た、最近話題の生物多様性の確保には程遠い緑地である。ここに工夫の余地がある。高 木を配置することで、景観の立体性を確保できると同時に、生物の多様性を引き出す端 緒を契機づける。駐車場のデザインの一部として積極的な展開が期待される。

熱環境改善的には、大きな効果が期待される。蓄熱して耐えがたい輻射熱を歩行者に 与えるアスファルトやコンクリート等の人工物は、夏期利用者は避けて通る。土の道や 植物で被覆された路面は、水分の継続的な蒸発による潜熱効果で低い表面温度が保たれ る。熱を放出して大気を温める人工物に比べて、ヒートアイランド化防止策として大い に役立つものと期待される。緑化が維持される場合は、その効果が大きいのだが、枯損 や消滅してしまった場合は、その効果は大きく低減される。維持管理技術の構築が必要 不可欠である。

3) 景観効果を狙う上での留意点

芝生の有する柔らかな質感と自然の緑は、利用者を視覚的に和ませ、景観を和らげる 効果がある。しかし、施工後時間のたった駐車場は、表土の流出や不陸や陥没のため、芝生 が消滅し、ブロックやプロテクターの人工色が目立ち、景観を阻害する事例も見られる。

駐車場緑化は、車の円滑な運行や安全性を重視するために、灌木や高木などの仕切り を排除する傾向にある。そのためか単調な景観を呈する場合が多くみられる。また駐車 場緑化は増加する傾向にあるが、樹木や花壇、分離帯などと組み合わせた緑化への配慮 の視点が欠けている。緑地としてカウントされるためにも多様な緑と複合されたデザイ ンが必要となると考えられる。

4) 維持管理上の留意点

芝生の駐車場では、芝生が消滅し、雑草に置き換わっている場所が多くみられる。除 草を行っているところは、こまめに行うところでは、雑草がほとんど見られず良好な景 観が維持されているが、手間をかけないところでは、キク科やマメ科などの雑草の侵入 が著しい。人の通行が多い部分は例外なく、客土の固結が進み、芝生はおろか雑草すら 生えない状況となっている。緑化駐車場では、各駐車場での利用時間が異なるため、芝生 の生育格差が著しく一元的な維持管理が困難な状況にある。

路面緑化駐車場の維持管理は、問題発生時点での現場対応のほか、放置もしくは放任 であることが多い。路面緑化駐車場は、景観的にはスポーツターフのような管理精度が 求められないため、粗放的な管理が求められることになる。ただし、日本は温帯性気候で あり植物の生育期間は長く、生育量も大きい。粗放的な管理をした場合、荒れた雑草の 景観が出現しやすいので要注意である。生活者に快適性をもたらすことができない景観 は緑化とは呼ばない。

緑化駐車場は、建設費用について通常のアスファルト舗装駐車場と比較すると、緑化 駐車場の建設コストはコスト面で不利な状況にある。維持管理においても植物の健全性 を維持するための費用負担が必至となり、建設費と合わせての費用負担となる。

緑化駐車場を緑地として加算できるか否かは各自治体の判断に委ねられている。緑地の 定義から見るとかなり厳しいと考えられる。

写真 4.1.2-1 維持管理の行き届いた鹿児島路面緑化事例

(3) 路面緑化の適用

路面緑化を適用する場合、アスファルト舗装等に比べるとイニシャルコストとラン ニングコストが共に高価となる認識を持つ必要がある。写真は集合住宅の駐車場の車 両走行路に緑化を施したものであり、緑化コンクリートと芝生保護材を組み合わせ灌 水装置により散水も行われている。メンテナンスもよく良好な景観が維持されている。

写真 4.1.2-2 車両走行路に適用した緑化事例

4.1.3 路面緑化の設計

環境圧の検討

緑化景観が良好に保たれるためには、植物の生育環境として相応しいか否かが重要で ある。路面緑化での植栽環境を評価する場合、最も重要な環境要因は日照条件である。 駐車頻度により、日中3時間以上の日照が確保できなければ日本芝の生育は困難となる。 高い駐車頻度の場合では、車の下部への緑化は断念し、図4.1.3-1のように車両走行路 に適用するのが望ましい。次に車両走行の頻度が高い場合、葉茎の擦り切れと植栽客土 の固結による枯死が容易に起こりうる。この場合、芝生保護材が沈み込まぬことを確認 した上で工法を選定することが重要となる。

駐車場独特の環境圧としては、エンジン排熱の問題がある。エンジンが熱い状態で駐 車した場合、エンジン下部は高温にさらされ、この部分の芝が枯死するのは避けること ができない。

このように、緑化部位が深刻なダメージを受ける環境圧は限られるため、事前の環境 圧の検討で、適切な工法選定及び植物の選定を行うことが重要となる。

(2) 緑化タイプの構造

本研究により得られた路面緑化工法を、適用場所の条件によりタイプ分けを行うと 以下のようになる。

①緑化タイプI:無灌水で薄層の路面緑化(コケ、セダム)

コケやセダムの根は厚い土壌を必要とせず、保護材の厚みの中で生育する。

図 4.1.3-1 無灌水で薄層の路面緑化

②緑化タイプⅡ:灌水有で薄層の路面緑化(芝、イワダレソウ) 灌水装置を使う場合は、薄層でもほとんどの地被植物が生育可能である。

③緑化タイプⅢ:無灌水で厚層の路面緑化(芝、イワダレソウ)

本研究で得られた路面緑化ユニットの構造である。保護材部分の高さを大きく取る ことで、根の育成空間を十分確保できる。またコンクリート版に保護材を直接設置す ることで、上面にかかる荷重を植生土に伝えることなく路盤にかかる。芝生は客土中 に十分な根を張ることができるため、降雨のみで通年の生育が可能となる。但し、近 年の夏季は連続の無降雨猛暑日が伸び続けている。客土中の有効水分量で植物の生育 期間に相違が出るのだが、やはり1週間に1度の灌水は必要と思われる。

図 4.1.3-2 無灌水で厚層の路面緑化の構成

④緑化タイプIV:灌水有で厚層の路面緑化(その他植物)

このように客土厚さが 20cm あり灌水装置が作動する場合は、地被植物のみならず 木本植物との組み合わせも可能となる。

(3) 植物の選定

当該路面緑化工法に適用する植物は適用場所に応じた選定が必要となる。おもな植物は芝草類、コケ類、セダム類、その他地被類であり、多くはない。表 4.1.3-1、2 に適用候補植物の特徴を示す。

	暖地型芝生	寒地型芝生				
種類	シバ類、バミューダグラス類、セントオーガ スチンなど	ブルーグラス類、ベントグラス類、ライグラ ス類、フェスク類など				
気象条件	高温乾燥を好む	低温多湿を好む				
土壤条件	砂質土壌を好む	埴壌土を好む				
耐暑性	強い	夏季休眠(夏枯れ)				
耐寒性	冬季休眠(冬枯れ)	強い				
耐乾性	強い	弱い				
監理難易度	容易(粗放管理に耐える)	難しい(集約的管理が必要)				

表 4.1.3-1 適用植物の特徴(芝)

		ケ類	セダム類	その他	
種類	スナゴケ、ギンゴケなど	ハイゴケ、シラガゴケなど	モリムラマンネング サなど	ヒメイワダレソウなど	
気象条件	日照を好む	日陰を好む	日照を好む	日照を好む	
土壤条件	砂質土壌	埴壌土	埴壌土	砂質土壌	
耐暑性	強い	強い	強い	強い	
耐寒性	強い	強い	弱い	強い	
耐乾性	強い	強い	強い	強い	
監理難易度	容易	容易	容易	容易	

表 4.1.3-2 適用植物の特徴(コケ、セダム)

(4) 客土の選定

根の活動に適した土は、通気性がよく、しかも保水性があって、肥料分の保持力に 優れた土である。三相構造のバランスのとれた土壌はこの条件を満たす。保水性と通 気性は相反する性質のようだが、団粒構造の土が、この両方の性質を兼ね備えたもの といえる。土は細かい粒から出来ていて、その粒がある単位で集まった土を「団粒構 造」という。その対極にあるのが単粒構造である。粘土や砂の状態で、隙間が少なく、 空気の流通や水の移動も少ないので、植物は空気不足で根腐れを起こすか、砂では水 不足で根の活動が押さえられてしまう。

団粒構造の土を作るもっとも効果的な方法は、土に堆肥、腐葉土、ピートモスなど の有機物を混ぜることである。有機物は土の中に多くの隙間を造り、それが分解して 腐植になり、土の粒子を引きつけて団粒化するノリのような働きをするからである。 この有機物は土の中の有用な微生物のすみかともなり、また肥料分を土中に保持する 力も大きい。よく腐熟した有機質を豊富に含んだ土が、柔らかく、弾力のある、肥え た良い土といえる。ただし、土中の有機物は微生物によって徐々に分解され続けてい くので、毎年施し続ける必要がある。

①人工土壌を用いる場合

適用される客土材料は植物生育性能に関する評価が定まったものを選定するのが望ましい。つまり物理性及び化学性について植物が健全生育可能な性能を有している土 壌が用いられるということである。国土交通省、UR都市機構、NEXCOでも使用す る客土材の質を土壌の物理・化学性の分析と結果で規定・管理している。路面緑化の 場合も、植物の健全な生育と必要とする緑化面積を確保するには、基本的には植物の 生育量に足る良質の客土量を確保すればよいことになる。人工土壌はこれらの条件を 満たす土壌として作られている。

②畑土を用いる場合

雑草や石ころを取り除き、全体をよく耕す。この時に、1平方m当たり油かす15 0g、リン酸分の多めな化成肥料100g、ピートモスかバーク堆肥、牛糞堆肥など を一緒に入れる。日本の土壌は一般的に酸性がきついので石灰を混ぜて弱酸性にする 必要がある。

③無灌水且つ薄層で用いる土壌

駐車場を緑化する場合、灌水装置を付ける工法はアスファルト舗装に比べ大幅なコ

ストアップとなり、敬遠されることが多い。この場合土壌の厚さを確保することが最 も重要であるが、同時に使用する客土の有効水分量が大きい土を選ぶことも重要であ る。本報告でも代表的な人工土壌の有効水分量を調査したが、種類により大きく異な ることが確認された。

4.1.4 路面緑化の施工

ここでは、一般的な駐車場緑化に適用する場合を想定しての施工について述べる。まず は緑化タイプの選定を行う。本研究で得られた路面緑化のタイプ4通りは図4.1.4-1に示 す選定フローに従い選び出すものとする。日照条件の確認をした後、植物の適応性をみて 種類を決定する。路面緑化ユニットは車両の走行に対して十分な体力を有するので、構造 的にはあらゆる部位での採用が可能である。車両の利用頻度で工法を完全に分けるには無 理がある。広大な駐車場であれば、部位により利用頻度も当然異なる。工法の選定と植物 の選定はフローを目安としながらも、柔軟な対応が求められるものと考える。通路の部分 は日照条件としては厳しく無いだろう。このような場所は、車両の利用頻度が少ない場所 と捉えて差し支えないものと考える。

図 4.1.4-1 路面緑化ユニットのタイプ別選定フロー

(1) 施工時期

施工の時期は播種及び張り芝の場合で異なる。一般的に施工直後から芝生景観が期 待できる張り芝が好まれるため、ここでは張り芝施工を中心に記述する。

張り芝により芝生を植え付ける時期は、暖地型芝の場合、3月から5月が適期である。当該工法は芝の密着性と保護機構がよいため、施工直後から供用に資することが 可能である。

冬季は霜柱の発生が懸念される場合、根と土壌の密着性が切れる恐れがあるため、 芝生を土壌に十分に転圧固定した後、芝生保護材を載せることを注意する。寒地型芝 草の場合、盛夏期を除く1年中施工可能である。盛夏期も散水が可能であれば、盛夏 期でも施工できる。暖地型芝草では、秋期の休眠前(関東地方では9月下旬~11月) を除く期間に施工可能である。

(2) 施工上の留意点

①路盤の上を不陸調整する

路面緑化ユニットは規格品であり、製品の下面は平らである。整地した路盤の上に ユニット設置するための不陸調整砂を敷きこむことが重要である。また、排水勾配が ある場合は計画に沿った勾配に合わせた施工が必要となる。

②張芝の時は目地を開ける

通常の暖地型芝草ソッドの場合、施工時期や供用開始までの期間によって目地を開 ける。目地間隔がある程度あった方が芝生の活性は高くなるが、仕上りまでの時間は かかり、場合によっては目地から雑草の発生が増えることもある。

寒地型芝草ソッドでは、ほとんど 100%張り(ベタ張り)で施工される。目地を開 ける場合は、現在では均一の目地幅である目地張りで施工する。碁の目張り、市松張 りは材料費を低く抑えることが出来るが、目地が埋まるまでにかなり時間がかかり、 その間に雑草が発生するため、仕上がるまでの管理費が必要である。また、目地幅が 均一でないため、ターフの不陸の原因ともなり、現在ではほとんど用いられない。筋 張りは法面等で用いられる。

③目土

張り芝工法では、施工後目土を施す。特に目地張りの場合は、目地を目土によって 埋めることが必要である。また、精度の要求される工事では、目土によって不陸の調 整を同時に行う。

原則的には基盤と同じ材質を用いるが、近年では雑草の発生を防止するために 砂 を用いることが多い。砂を使用する場合、pHの高い資材を使用すると病害の発生が 多くなるので避けるべきである。また、貝殻など炭酸カルシウムの含有量もpH上昇 の原因となるので、注意が必要である。

(3) 施工手順

施工手順は、駐車場緑化工法と同様である。

①基礎工事(路盤面の施工)

十分な締め固めを実施し、所定の路盤耐力を確保する

②路盤の上に不陸調整の砂を敷く

不陸調整の砂は厚さ3cm までとする

③路面緑化ユニットを敷設する

ユニットは相互に繋結し、動かないようにする

③客土を充てんする。(水極め等で密に充てんする)

客土材は有効水分量の高いものを用い、締め固めを行う

④芝生保護マットを上面に設置する

芝生保護マットを車両走行で外れぬように支柱に固定する

- ⑤芝の播種を行う
 - 張芝の場合は、目地を開けて施工する
 - 播種は 20~30g/m2 程度で行う
- ⑥覆土し、散水養生を行う
 - 覆土もしくは目土を施し、散水の後十分な養生を行う
- 4.1.5 維持管理
 - (1) 総論

維持管理の良否で、緑化景観の良否が決定されるといっても過言ではなく、芝生の 景観づくりは管理頻度できまる。(表 4.1.5-5 参照)生き物の生育を維持する上での 不可欠の管理項目として、維持管理には、灌水、剪定、施肥、除草、病虫害防除等が あり、管理を怠れば生育不良となること必至であるため、計画初期に準備しておくこ とが重要である。適用する植物は主に地被植物であり、コケ、セダム、芝生、タマリ ュウ、イワダレソウ等が推奨される。管理内容については植物一般について記述する が、路面緑化は通常芝生で行われることが多いため、芝生の通常管理の目的をここに 挙げ、維持管理の趣旨を再確認する。

- 1) 刈り込みの目的
 - ①芝生面を平滑にする
 - ②芝生の分けつを促進する
- 2) 施肥の目的
 ①緑度を長期間保つ
 ②葉の密度を高める

③芝生の必要な養分を与える

- 3) 灌水の目的
 ①消費した水分を必要なだけ補う
 ②消費した土壌の水分を補う
- 4) 目土の目的
 - ①芝生の不陸を修正する
 - ②表層の土性を改良する

③芝生の徒長を防ぎ、芝生の更新を助長する

- 5) 転圧の目的
 - ①芝生面の不陸を調整する
 - ②芝生の密度を高める
 - (2) 灌水

植物は根より水分を吸収し、葉からの蒸散作用により水分を放出する。植物が正常 な生育をしていくために、蒸散と吸収のバランスが保てるように灌水を行う。 路面緑化ユニットの植物が必要とする水の量の算定例を示す。

♦計算例 1

植生	芝生
夏の平均気温	30°C
相対湿度	35%
PET/day	8.7mm
植物係数	0.9
灌水効率	0.95(ドリップ灌水)
必要灌水量	8.7×0.9 = 8.24 mm/day
	0.95

夏季の日中には、芝生は 8.24mm/day 雨量相当の水を要求する。このとき路面緑化ユニ ット(t=200)で芝生は何日間生育可能なのか、計算で推定する。

♦計算例 2

路面緑化ユニット内土壌水分量

真珠岩^{n[°]-71^ト}(有効水分量 256 l/m³) 厚み 20cm の有効水分量は 200/1000×256=51.2 l/m²

真夏日が連続する場合

51.2÷8.24=6.2 *6.2日で有効水分を使い切る(!?)

連続真夏日 40 日の場合

芝生の必要灌水量は

 $8.24 \times 40 = 329.6$ l/m²

*6日に1度十分な灌水が必要

人工地盤上の芝生地(黒土 t=200)で、20 年間無灌水生育の実績があるとの報告もあるが、 計算結果でも判る通り 6 日に 1 度十分な灌水、または散水栓を用意した管理人の目視によ る散水が必要と考えられる。

表 4.1.5-1 に、灌水回数および灌水量を示すが、客土材の種類や現地の状態により回数 および水量を適正調整する。本研究で得られた工法では、夏季の厳しい環境でも6日に1 回の散水で済むため、ほとんど降雨のみで良いと考える。

作業に当っては、特に次の点に留意する。

a. 夏期は早朝か夕方に、冬期は日中に行うようにする。

- b. 自動灌水装置を設置しない場合は、ホースで十分に灌水する。
- c. 灌水は時間をかけて、水が十分に地中に浸透するまで行う。

d. 水鉢のみでなく、枝葉にも時々散水して塩類やホコリ等の洗浄も同時に行う。

1	2	3	4	5	6	7	8	9	1 0	1 1	1 2
5日に		4日に1回				2日に		3日に		5日に	
1 回						1	口	1	口	1	口

表 4.1.5-1 灌水回数(一般外構植栽)

*冬期は乾燥した晴天が3日以上続けば1回行う。

(3) 刈り込み

1) 目的

刈り込みの目的は2つに分けることが出来る。芝生のような地被植物は刈り込み頻度を 増やすほど草丈が低く密な美観を保持する。ただし、利用頻度の少ない場所で頻度の高い 刈り込みは不経済である。刈り込み頻度が高ければ雑草の侵入が目立たないけれども、頻 度を低くすれば雑草の侵入繁茂が目立つようになる。この場合見苦しい景観を呈すること になり、不評を買う。

茎葉が繁茂しすぎると通風・日照等が阻害され、生育不良や病虫害の発生が起こりやすい。刈り込み後は、刈りかすの処理が必要であり、それにより健全な生育と病虫害の予防 ができる。

2) 方法

地被類は最低でも年2回の選定を行い、1回目の刈り込みは落下後に隙間から枝軸が見 える程度に、周辺植栽と合う様に、きれいに刈り込む。2回目は、花芽がついているもの が多いため、徒長枝を刈り込む程度とする。

	1月	2 月	3月	4月	5月	6月	7月	8月	9月	10 月	11 月	12 月
中木												
低木												
芝生												

表 4.1.5-2 剪定・刈り込み

(4) 施肥

自然界一般の木は、必要な養分を土壌中より吸収し、いわゆる自己施肥によって生育している。

当地は客土・土壌改良材等で改良はしているが、一時的なものに過ぎず、活力となる肥料を定期的に施し、樹勢を高め抵抗力をつけなければならない。

肥料には速効性肥料を緩効性肥料があるが、使いやすさと経済性の面で緩効性肥料が(有 機質)が適当である。また施肥の方法には寒肥と追肥があるが、高中木は寒肥のみで良く、 低木は落下後にもう一度施したほうが良い。

	1月	2 月	3月	4月	5月	6月	7月	8月	9月	10 月	11 月	12 月
rtı _∔-	寒	肥										
中小												
低十	寒	肥				追	肥					
低不												
世上	寒	肥										
人生												

表 4.1.5-3 施肥時期

(5) 除草

雑草による養分や水分の搾取を防止し、丈の高い雑草による日照阻害を防止するた めに行う。人力除草の際、植栽木を傷めないように根から取り除き、土は良くふるい 落とすと共に植栽木の根が浮き上がった場合には良く押さえて植えなおす。除草の回 数は、雑草の発生に応じて4~10月の間は1ヶ月に1回の割合で除草が必要である。

(6) 病虫害防除

植え込み後1~2年は樹勢が弱っているため、病虫害が多量に発生しやすいので特に注意する。病害虫とも、その種類によって発生する時期はほぼ決まっているため、 発生前の早期予防が大切である。薬剤散布の時期は表4.1.5-4のとおりとし、多量に 発生する年とそうでない年があるので、散布回数は適宜調整する。

	1月	2 月	3月	4月	5月	6月	7月	8月	9月	10 月	11 月	12 月
中木												
低木												

表 4.1.5-4 薬剤散布の時期

(7) その他

ここでは、芝生の管理、コケ類(スナゴケ)の管理、セダム類の管理について紹介する。 ①芝生の管理

芝生は管理頻度に違いで景観に大きな差異を生じる。ここでは4段階の管理と管理目標

について表 4.1.5-5 に示す。4 段階の管理頻度を以下に示す。

A:主要な広場や施設周りなどで修景性が高く、芝生の美しさが重要な景観構成要素となり、良好に管理すべき芝生地

管理目標:刈込高 2~3cm、芝高 5cm以下、単一草種の維持、雑草混入許さず、100%の維持目指す。茎葉が密生し、空隙が少ない状態をつくる。

B:広場や施設周りなどで修景性が中程度で、芝生の緑が一景観構成要素となり、良好に 管理すべき芝生地

管理目標:刈込高 3~5cm、芝高 7cm 以下、単一草種の維持、一部雑草混入を容認す るが、90%以上の維持目指す。茎葉は密生するが、一部空隙があってもよい。

C:主として法面などの土壤保全あるいは、草地化を目的とした芝生地で、緑を保持する ための最小限の管理を行う芝生地

管理目標:刈込高 5~10cm、芝高 10cm以下、草地化を目標とし、雑草混入容認。 90%以上の維持目標、密生度低く、空隙がかなり目立つ。

D:Bにランクされる芝生地であるが、予算の制約上、管理水準を下げ単一草種を維持す る最低限度の管理を行う芝生地

管理目標:刈込高 5~10cm、芝高 10cm 以下、単一草種の維持目標、雑草混入容認。 90%以上の維持目標、密生度低く、空隙目立つ

表 4.1.5-5 管理頻度と芝生の見え方

ランク	А	В	С	BÍ
修景性	高い	普通	低い	普通
芝生地の評価	主要な広場や施設周りなどで修 景性が高く、芝生の美しさが重要 な景観構成要素となり、良好に管 理すべき芝生地	広場や施設周りなどで修景性が 中程度で、芝生の緑が一景観構 成要素となり、良好に管理すべ き芝生地	主として法面などの土壌保全 あるいは、草地化を目的とし た芝生地で、緑を保持するた めの最小限の管理を行う芝生 地	BIにランクされる芝生地で あるが、予算の制約上、管 理水準を下げ単一草種を維 持する最低限度の管理を 行う芝生地
 管理目標 (維持すべき芝生の状態=品質) ・均一性(刈込み高さ) (芝 高さ) 芝の単一性(雑種混入度) ・被 度(非裸地率) ・茎葉の密生度 	刈込高 2~3cm 芝 高 5cm以下 単一草種の維持、雑草混入許さ ず 100%の維持目指す 茎葉が密生し、空隙が少ない	刈込高 3~5cm 芝 高 7cm以下 単一草種の維持、一部雑草混 入容認 90%以上の維持目指す 茎葉は密生するが、一部空隙あ り	刈込高 5~10cm 芝 高 10cm以下 草地化目標、雑草混入容認 90%以上の維持目標 密生度低く、空隙がかなり目 立つ	刈込高 5~10cm 芝 高 10cm以下 単一草種の維持目標、雑 草混入容認 90%以上の維持目標 密生度低く、空隙目立つ
管理作業目標・回数 ・ 芝刈り ・ 施肥(N量) ・ 人力除草 ・ 除草剤散布 ・ 目土掛け ・ エアレーション ・ 病虫害防除 ・ 灌木 ・ 補植 (山曲) 建乳 生活 整 地 古 建乳 に (山田) (本乳 生活 (小田) (山田) (山田) (山田) (山田) (山田) (山田) (山田) (山	 (回/年) 7~10 3~4(20~25g/) 4~6 2~3 1~2 1~2 適宜 適宜 適宜 助)公園经地管理財団、公園管理 	 (回/年) 4~6 2~3(15~20g/) 3~4 1~2 0~1 0~1 適宜 適宜 適宜 	 (回/年) 3~4 1~2(8~15g/) 0~3 0~1 0~1 - - - - - - - - 	(回/年) 3~4 1~2(8~15g/) 2~3 0~1 0~1 0~1 - - - -

②コケ類の管理

ここでは最近屋上緑化などに適用事例が多くみられるスナゴケの管理について述べる。表 4.1.5-6 に一般的なスナゴケの管理要領をしめす。

6 備考
R
R
к
日中灌水厳禁
ŧщ

表	4 1	5-6	コケの年間管理スケジュール
1X	T . I		/ の 午 回 6 年 7 / / エ ル

* 日照の程度の違いで同じ品種でも見た目が大きく異なる。日射量が少ないほど緑色は 濃くなっていく。

- 生 育:風通しと日当たりのよい場所が生育によい。成長期(春季および秋季)、休眠期(夏 季および冬季)
- 植栽地:スナゴケは明るい場所を好むので日陰になるような設備は設けない。相対照度 40%以下は生育不良となる。

灌 水:灌水を行う場合は、高温(30℃以上)を与えない。灌水用の水の水質を
 必ず確かめること。鉄や銅等を含有する水は使用しない。

pHが4以下、7以上の水は使用しない。沼や池などの溜まり水は極力使用を避ける。

塩分濃度 0.05%以上を含む水は使用しない。また海砂も使用を避ける。

高温時の散水に注意する。散水するときは必ず散水用のノズルを先端部を取り付けてから行い、ホースからの直接的な散水はしない。

施 肥:化学肥料その他の栄養剤は与えない。むやみに巻縮させない。

スナゴケ上には長期間重量物を置かない。

- 病害虫:過湿時に糸状菌が繁殖することがある。このときはトップジンM等で殺菌する。 除 草:除草の際は手作業で行い、除草剤などは薄めで使用する。除草時コケ上 に踏み込む際は群落の破壊に注意する。
- 用 土:その他:常に植物体の状態を確かめて、異常が発生した場合は適切な処置を施す。 落ち葉やゴミなどがスナゴケ場にある場合は直ちに取り除く。 犬やネコ、鳥などの排泄物に注意する。アルカリ度の高い物質は周辺に置かない。

③セダム類の管理

駐車場や人工地盤上は高温や低温、さらに乾燥や強風等にさらされ、植物にとって厳 し生育環境になっている。このような場所で土層厚を薄くし路面を緑化する植物として は、コケ類同様にセダム類が適している。セダム類はコケ類同様に自然降雨のみで灌水 もほとんどいらない植物である。しかし、ノーメンテナンス(なにも人の手を加えない 状態)で放置された場合、過酷な条件に強いセダムといえども健全な生育は不可能にな ります。

一方、適切なメンテナンス状態でセダム類を用いれば低管理で良好な緑化景観を維持 していくことが可能である。図4.1.5-1 はメキシコマンネングサの四季の景観変化を示 している。また表4.1.5-7 はセダムの点検及び維持管理作業について示したものである。 健全な植生を維持させるためには、年3回程度の定期的なメンテナンスが必要である。 確実なメンテナンス作業を実施するためには専門業者とのメンテナンス契約を結ぶこと も必要となる。 屋上は高温や低温、さらに乾燥や強風等に曝され、植物にとって厳しい生育環境になっています。この屋上へ薄層で緑化するに はセダムに代表される乾燥に強い多肉植物が適しています。しかしノーメンテナンス(何も人の手を加えない状態)で放置された 場合、遅酷な条件に強いセダムといえども健全な生育は不可能になります。一方、適切なメンテナンス状態でセダムを用いれば 低管理で良好な屋上緑化を維持していくことが可能です。

図 4.1.5-1 セダムの1年の景観変化 出典:薄層屋上緑化技術協会 パンフレット

表 4.1.5-7 セダムの管理計画表

健全な植生を維持させるためには、年間3回程度の定期的なメンテナンスが必要です。確実なメンテナンスを実施するために 専門業者とのメンテナンス契約をお勧めします。

◆メンテナンスに水を使用するので、屋上に必ず散水栓を設置してください。◆メンテナンス金額については協会員各社へご相談下さい。

引用文献

		点検(建物の智	理者が実施)		維持管理作業()	メンテナンス契約を推	莫)
		植栽城の点検	権殺域周辺部の点検	灌水	除草	施肥	病害虫防除
R.	翔	春·夏·秋	春·夏·秋	乾燥期	春·夏·秋	春-秋	夏·秋
内容		・植物の生育状況 ・描葉の有無 ・病害虫見生の有無 ・土壌現象、速矢 ・静化システムの不具合 ・種取成内の排水口 ・その他の異常の有無	・請木(に)ン ・請木(読) ・防木(置の損傷	長期間(10日から 2週間) 時雨がない場合に灌木を 推奨	備草が種を落とす前に除去 することが望まし、	室25世紀料等の数市 施肥 直後の数水を推奨	植殺・集剤散布による 気除
	3月 4月	•	•		•	•	
×	5月 6月 7月	0	•	建 合价は日中			必要に応じて
秋	8月 9月 10月		•	074234131234	0	•	必要に応じて
æ	11月 12月 1月 2月						
-	*	強軍、豪雨、台軍) 。点検を実施し、7	の前後には ください	環境条件により灌木量や 灌水間隔等が異なります。	花がらは大量に残っている と病害が発生しやすくなる ので、論去をお勧めします	肥料の種類、用法等にによ り年に1回でも可	業剤の種類、用法等につい ては協会員各社にご相談く だおい

(注1) 上記の実施時期に、領東へ「国国の一政治を標準に放定したものですのでくれば別外の加減の実施時期に多少室転いたします。26に、権敵地の領導条件によっては 況に応じた付加的なメンテナンスが必要となります。詳細は協会員各社にご相談ください。
(注2) 当メンテナンスマニュアルは現在の知見および経験をもとに作成されていますので、今後の実験や技術革新等により変更されることがあります。

出典:薄層屋上緑化技術協会 パンフレット

1) グラスパーキング(芝不化駐車場) 普及ガイドライン第1次(案) 兵庫県県土整備部県土 企画局、2007年3月

 書名 平成 22 年度都市環境改善路面緑化システムに関する 調査研究報告書
 発行 平成 23 年 3 月 財団法人 エンジニアリング振興協会 〒105-0003 東京都港区西新橋一丁目 4 番 6 号 TEL 03 (3502) 4441 (代表)
 印 刷 株式会社 リョーサン