(25-62②) 平成 25 年度

安全・安心・減災等の確立に資するエンジニアリングの調査研究 補助事業

老朽化トンネル補強技術の研究

報告書

平成 26 年 3 月

一般財団法人 エンジニアリング協会地 下 開 発 利 用 研 究 セ ン タ ー

本報告書は、公益財団法人JKAより機械工業振興資金の補助を受け、一般財団法人エ ンジニアリング協会 地下開発利用研究センターが実施した平成 25 年度「老朽化トンネル 補強技術の研究」の成果を取りまとめたものです。

昭和の高度成長期以来、構築されてきた建設物が、経年変化による老朽化あるいは建設 当時との荷重条件の相違による耐荷力不足の問題に近い将来直面することは、想像に難く ありません。都市部の地下に建設されている地下鉄、下水道トンネル、共同溝トンネルに ついても、都市再開発による外荷重変化に伴う覆エコンクリートの変状といった事案が浮 かび上がってきており、都市の再生の観点からも、トンネルの補強技術に対する需要が高 まっています。また、東日本大震災以降、耐震基準が見直されつつあり、今後、既設トン ネルの耐震補強が必要とされてくるものと考えられます。

本研究で取り上げた補強技術は、都市部の地下に建設されている地下鉄、下水道トンネ ル、共同溝トンネルといった円形トンネルを対象としており、補強方法としては、補強が 必要な既設トンネルの内面に配置したゴムチューブを覆うように補強リングを配置し、次 にゴムチューブ内にセメントミルクを加圧注入・硬化させてゴムに圧縮応力を生じさせ、 既設トンネルを外側(地盤側)へ押す圧力を作用させるものです。この方法は、これまで の増設補強壁の効果とは異なり、補強実施時点で既設トンネルの加重分担を低減できる可 能性があります。

本研究では、上記の補強技術の成立性を確認することを主眼に、材料選定室内実験にお いてセメントミルク硬化後の圧力残存状況を、既設トンネル、補強リング並びに充填材加 圧力などをモデル化した構造解析によって、既設トンネルに悪影響を与えない加圧力並び に補強完了後の外荷重作用時の補強リングの荷重分担状況を検討したものであり、実用化 に向けて、取り組むべき課題にも言及しています。

本研究は、地下開発利用研究センターの研究企画委員会の下で、学識経験者、関係コン サルタント有識者並びに当協会会員企業の専門家からなる研究委員会(委員長公立大学法 人前橋工科大学 辻幸和学長)を編成して、実施してまいりました。なお、本調査研究の 取りまとめにあたっては、大成建設株式会社が中心となって行いました。

本研究にご協力いただいた関係各位に対して心から謝意を表するとともに、本報告の成 果が各方面で有効かつ広範囲に活用されることを心より期待する次第です。

平成26年3月

一般財団法人エンジニアリング協会

理事長 高橋 誠

老朽化トンネルの補強技術の研究

社会が持続的に発展していくためには、インフラの整備とその機能の向上は不可欠であ り、とりわけ社会基盤施設の長寿命化と性能の向上は喫緊の課題である。特に都市部の地 下に建設されている地下鉄や共同溝等のトンネルは、経年劣化と老朽化の進行に加え、耐 震性能の向上や都市再開発等による外荷重増加への対応による補強技術の開発が要請され ている。

本委員会で対象とする老朽化トンネルの補強工法は、材料と構造を巧みに複合したこれ までに例の無い独創性に富む優れたもので、多方面に適用が期待できる技術である。補強 が必要な既設トンネルの内側に鋼製の補強リングを組み立てて、既設トンネルと補強リン グの間に配置したゴムチューブ内に充てん材のセメントミルクを加圧注入して既設トンネ ルを内側から地盤側の外側へ押す力を与えて、セメントミルクが硬化後には既設トンネル と補強リングが複合して外荷重を分担する補強工法である。このように補強の各施工段階 で構造的検討が必要であるとともに、用いるゴムチューブとセメントミルクの材料の選定 と施工を加味した強度、弾性係数、クリープ等の力学的特性並びにセメントミルクの容積 変化等を考慮した本補強工法の実現性を、本年度は施工実験と構造解析により確証するこ とができた。このような材料と構造を巧みに複合した補強技術の評価は、それぞれの分野 で優れた業績を挙げておられる方に本委員会の委員に加わって頂いて初めて可能であった。 この補強工法は、トンネル内空部に大きな支障となる部材を存置する必要が無いこと、補 強実施時点において既設トンネルを外側へ押す力を与えて補強のレベルを任意に設定でき ること、および補強リングと分担して将来の荷重増加に対して対応できることなどの優れ た特徴を有しており、多方面に適用できるものである。

今後は、充てん材のセメントミルクの長期間における硬化性状、ゴムの長期にわたる性 状と経済化を図るゴムチューブ構造の簡素化、充てん材の加圧の大きさと補強リングの形 状寸法、既設トンネルの劣化程度と補強リングの形状寸法の組合せ、そして既設トンネル と補強リングの充てん材を介した複合挙動を簡便に照査する方法について確認し確立する ことにより、多方面へ合理的で経済的な適用ができることと確信している。

本調査研究の実施に際しては、一般財団法人エンジニアリング協会の地下開発利用研究 センターおよび大成建設株式会社の皆様方から多大なご助力とご支援を頂きました。また 委員会では、委員の方々に多くの有用なご意見やご提言を頂きました。厚くお礼申し上げ ます。

平成26年3月

一般財団法人 エンジニアリング協会

平成25年度老朽化トンネル補強技術の研究委員会

委員長 辻 幸 和

(公立大学法人 前橋工科大学学長)

平成25年度

老朽化トンネル補強技術の研究

委員会名簿

- 委員長 辻 幸和 公立大学法人 前橋工科大学 学長
- 委員 岸 利治 東京大学生産技術研究所 人間社会系部門 教授
- 委員 野村 貢 株式会社建設技術研究所 東京本社道路・交通部 部長
- 委員 今村 聡 大成建設株式会社 技術センター 副技術センター長
- 事務局 竹東正孝 一般財団法人 エンジニアリング協会 地下開発利用研究センター 技術開発部 研究主幹

平成25年度

老朽化トンネル補強技術の研究 報告書

目 次

序

第1章 調査研究の概要
1.1 背景および目的····································
1.1.1 背景
1.1.2 目的
1.2 補強方法
1.2.1 現状と課題
1.2.2 着眼点と補強概要
1.2.3 補強方法の特徴
1.2.4 補強手順
1.2.5 施工状況概要
1.3 補強方法の適用範囲と適用方法
1.3.1 適用範囲について 5
1.3.2 適用方法について 5
1.4 調査研究の進め方
1.5 研究内容と成果概要
1.5.1 材料選定実験13
1.5.2 構造解析
1.6 検討項目13
第2章 補強効果の確認実験・・・・・・15
2.1 実験の目的 ·······15
2.2 蓋状平板加圧試験装置概要15
2.2.1 ゴムチューブおよび蓋状平板形状寸法15
2.2.2 実験装置及び計器配置
2.3 材料選定検討19
2.3.1 ゴムチューブ
2.3.2 充填材
2.3.3 間詰材
2.4 加水圧実験結果
2.4.1 加水圧過程
2.4.2 実験結果
2.4.3 加水圧実験結果のまとめ29
2.5 充填材加加圧注入実験結果30
251 本博材の補温ゼ 20

2.5.2 加圧注入過程	
2.5.3 実験結果	
2.5.4 浮上り反力の経過試算	
2.5.5 まとめと課題	
第3章 補強技術の成立性確認のための解析的検討	51
3.1 補強技術の成立性確認のための解析的検討ステップ	51
3.1.1 充填材加圧注入時・充填材硬化後残存圧力作用時の安全性	51
3.1.2 追加外荷重作用時の補強効果の確認	
3.2 既設トンネルと補強リングの構造モデルの設定	
3.2.1 既設トンネルの構造モデル	
3.2.2 補強リングの構造モデル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
3.2.3 検討時期毎の既設トンネルおよび補強リングのモデル化	61
3.3 補強技術の成立性の検討条件	67
3.3.1 既設トンネル仕様の設定	67
3.3.2 補強リング仕様の設定	71
3.3.3 荷重	75
3.3.4 地盤反力係数	
3.3.5 継手ばね	
3.3.6 充填硬化部材のモデル化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
3.4 解析結果	
3.4.1 解析方法と解析モデル	
3.4.2 解析結果	
3.5 充填材加圧注入時・充填材硬化後残存圧力作用時の安全性の検討	117
3.5.1 各部応力照查方法	117
3.5.2 各部応力照查結果	121
3.5.3 まとめと課題	130
3.6 追加外荷重作用時の補強効果の検討	131
3.6.1 荷重分担状況	131
3.6.2 まとめと課題	132
第4章 まとめおよび今後の課題・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	133
4.1 まとめ	133
4.1.1 充填材加圧注入実験	133
4.1.2 充填材加圧注入時・補強完了時の安全性の検討	133
4.1.3 補強完了以降の補強効果の検討	133
4.2 今後の課題	133
4.2.1 充填材加圧注入実験	133
4.2.2 充填材加圧注入時・補強完了時の安全性の検討	133
4.2.3 追加外荷重作用時の補強効果の検討	133
4.2.4 平成 26 年度実施予定項目	134

第1章 調査研究の概要

1.1 背景および目的

1.1.1 背景

本調査研究は、都市部の地下に建設されている地下鉄、共同溝トンネルといった円形トンネルを対象とする。

これらの対象トンネルでは、経年変化による老朽化などが進んできており、この状況に 対応すべく、特にコンクリートの剥落に対する各種の補修技術が開発されてきている。

しかし、都市再開発による外荷重変化に伴う覆エコンクリートの変状といった事案が浮 かび上がってきており、上記の補修技術のみでは十分な対応が困難となる。このため、 老朽化トンネルの耐力を増加させる補強技術が、都市の再生技術として今後必要な技術 になってくる。

また、東日本大震災を教訓に耐震補強のさらなるグレードアップが必要とされてきつつ あり、このような問題に対しては、上記の補修技術のみでは十分な対応が困難となる。

1.1.2 目的

本調査研究では補強方法として、補強が必要な既設トンネルの内側に補強リングを組立 て、補強リングと既設トンネルの間に圧力を掛けて、既設トンネルを内側から外側へ押す 力を与えることによって行う技術に着目して行う。なお、既設トンネルの補強を担うのは 補強リングであり、注入圧力による補強の程度は、既設トンネルの状況を把握したうえで、 既設トンネルの構造に支障をきたさない範囲内とする。

そこで、上記の補強技術の成立性を確認することを主眼に、材料選定室内実験によって セメントミルク硬化後の圧力残存状況を確認するとともに、既設トンネル、補強リングな らびに充填材加圧力などをモデル化した構造解析によって既設トンネルに悪影響を与えな い加圧力ならびに補強完了後の追加外荷重作用時の補強リングの荷重分担状況を検討する ものである。

1.2 補強方法

1.2.1 現状と課題

トンネルの補強対策としては、①覆工内面に補強壁を増設して既設覆工と荷重分担を行 わせること、②剛性を有する軸力部材を十字状や放射状に組立ててジャッキによって軸力 を与え、既設覆工を地山側に押して支保することで、既設覆工の断面力を低下させること などが考えられる。

しかし、①の増設補強壁では、補強時点で既設覆工に発生している断面力を直ちに軽減 できる方法ではない。これに対して②の支保部材では、軸力を導入することによって、発 生している断面力を直ちに低減することが可能である。ただし、トンネル内空部に支保部 材を存置する必要があるため、トンネルの供用に大きな支障となる可能性が高い。

1.2.2 着眼点と補強概要

構造力学上、半径 r の円筒形部材に法線方向から等分布荷重 p が作用すると、部材には 周方向に圧縮力 N(=p×r) が発生する。円筒径部材をこの圧縮力に耐え得る仕様とするこ とで、等分布荷重に抵抗できる。この事項をトンネルの補強に利用することを考える。 図1.2.2-1 に示すように、既設トンネルの内面にゴムチューブを貼付け、その内側に補 強リングを配置する。ゴムチューブ内にセメントミルクを加圧注入してゴムに圧縮応力を 生じさせ、既設トンネルを外側(地盤側)へ押す圧力を作用させる。

上記の反力は、補強リングが軸圧縮力として負担する。

1.2.3 補強方法の特徴

補強方法の特徴を以下に列挙する。

① 増設補強壁の効果とは異なり、補強実施時点で既設トンネルを外側へ押す力を与える ことができる。

②支保部材のようなトンネル内空部に大きな支障となる部材を存置する必要はない。
 ③補強リングの仕様を上げておくことによって将来的な荷重増加に対して、補強リングが荷重分担できる。

1.2.4 補強手順

図 1.2.4-1 に補強の手順例を示す。

STEP-2 ゴジョーブを覆うように補強力がを配置する。

1.2.5 施工状況概要

補強が必要な範囲に対して、セグメント幅内に補強リングを1周配置することを考える。 したがって、補強リングは離散的に配置されることになる。

対象となるトンネルの径によるが、補強リングの組立にあたっては、資材搬入車両から の荷受けのための門型クレーン、フィーダーおよび組立用のエレクターを装備した移動式 の設備を用いることによって、夜間作業時などの施工効率を向上させることができると考 えられる。

図 1.2.5-2 補強リング組立状況例

1.3 補強方法の適用範囲と適用方法

表 1.3-1 に本工法の適用範囲と適用方法を示す。主要な事項を以下に示す。

1.3.1 適用範囲について

コンクリートの劣化が進行しており、既設トンネルの荷重を分担して担う補強が必要な 場合や、外荷重が設計時から変化しており、もしくは変化することが予想されて、既設ト ンネルの補強が必要とされる場合(既設トンネル内から補強せざるを得ない場合)を対象 とする。

1.3.2 適用方法について

補強リングが補強力を担うものとする。

加圧注入圧は、既設トンネルに支障が発生しない大きさ以内とする。また、加圧注入圧 は、外荷重の変化荷重を目安とすれば、0.2MPa(=200kN/m2)程度以内と考えられる。

1.4 調査研究の進め方

実施体制は以下のとおりである。

図 1.4-1 実施体制図

1.5 研究内容と成果概要

表1.5-1に課題とこれに対する研究内容を示す。また、実施工程表を表1.5-2に示す。

言甲 旦百	宝饰道日				ڌ	平成25年層	1402			
市本定思	美胞項目	7月	8月	9月	10月	11月	12月	1月	2月	3月
行事等		▽第1回墾 ●研究 ●実験	發員会 計画説明 計画説明			▽第2 ●実! ●解 [:]	回委員会 験結果報告 析条件説明		▽第3回委 ●解析結頻 ●報告書材)) 県報告 構成説明
1. 補強 効果の確	選定ゴム材による 加水圧試験	ביג גיי 	ーブ製作	 加水圧試 結果の	験)整理(ゴム厚 ━	の選定)				
認	選定充填材による 充填材材加圧試験				充填材加加	E試験 結果の	整理(充填材(D選定,加圧効	果の把握)	
2.補強 成立性検 討	3次元FEM解析			継手構造	の検討		モデル作成・	解析実施 結果の整理	(加圧効果の	推定)

表 1.5-2 実施工程表

 $-11 - \sim -12 -$

1.5.1 材料選定実験

・材料選定検討によって、ゴムチューブ材質としてクロロプレンゴムを、充填材として PC グラウト材を選定した。

 ・充填材加圧注入実験を行い、①充填材の硬化過程で浮上り反力が消失するような事象は見られないこと、②所定の浮上り反力を充填材の硬化過程後に得るためには、所定の 浮上り反力に対応する加圧注入圧の1.5倍程度の加圧注入圧とする必要があることを確認した。

1.5.2 構造解析

・充填材の加圧に際して既設トンネルの安全性を考慮すると、設定条件下では常時相当の充填材の加圧値を 50kN/m²または 76kN/m²以下にする必要がある結果を得た。

・設定条件下では、補強完了後の外荷重作用時の補強リングの荷重分担率は9%となった。

1.6 検討項目

表 1.6-1 に平成 25 年度の検討実施項目とその成果を踏まえた平成 26 年度の検討予定項目を示す。

平成25年度実施項目	平成26年度実施予定項目
1. 材料選定実験(加圧効果の確認)	1. 構造解析
①材料選定検討	①加圧注入圧と残存圧力の推定
②加圧実験	 ②状況別補強仕様の検討
・選定したゴムチューブ、セメントミルク、	
間詰材による加圧効果の確認	2. 設計方法の検討
	・照査項目の検討およびモデル化の検討
2.構造解析(補強の成立性検討)	
①継手構造の検討	3.施工方法の検討
② 3 次元 F E M解析	・加圧注入機材の検討、既設トンネル不陸面への対処方法の向
・既設トンネルへの影響(セグメント本体及び継手)	上など
・補強リングの補強効果(追加外荷重作用時の荷重分担)	
・条件:GL-20mの内空5mのトンネルの補強、沖積砂層、	
加圧注入範囲(全周加圧、上下加圧)	

表 1.6-1 検討項目

第2章 補強効果の確認実験

2.1 実験の目的

ゴムチューブ内に充填材を加圧注入することで、ゴムの圧縮応力を介して、既設トンネ ルを押す圧力が発生するか否かを確認することを目的として、蓋状平板内にゴムチューブ を配置した加圧実験を行う。充填材硬化過程における加圧力の大幅な減少がないことを確 認する実験である。

実験ケースとしては、ゴムチューブの加圧効果への影響を調べるための加水圧実験、充 填材の加圧効果への影響を調べるための充填材加圧注入実験の2ケースとする。

ゴムチューブ仕様ならびに充填材種類については、材料選定検討によって選定した材料 を用いる。

2.2 蓋状平板加圧試験装置概要

2.2.1 ゴムチューブおよび蓋状平板形状寸法

ゴムチューブおよび蓋状平板形状寸法を図 2.2.1-1 に示す。

蓋状平板の内高さは、既設トンネル径 2m の場合の補強リング試算結果から、35mm としている。

注入圧は、最大加圧力の目安となる 0.2MPa に対して、加圧力のロスに対する余裕を考 慮して 1.5 倍の 0.3MPa とする。

注入孔及びエア抜孔ならびにゴムチューブ端部については、注入圧 0.3MPa を保持する ために、ゴムチューブを金具で挟み込む構造としている。

図 2.2.1-1 ゴムチューブ及び蓋状平板形状寸法

ゴムチューブの状況および設置状況を図2.2.1-2に示す。

② ゴムチューブと蓋状平板の納まり状況

図 2.2.1-2 ゴムチューブの状況および設置状況

2.2.2 実験装置及び計器配置

蓋状平板にゴムチューブを取付けた後に受台上に配置し、反力受桁、通し桁を設置して ロードセルを設置する。その後、ロードセルと床面間に PC 鋼棒を配置する。このとき、 ゴムチューブと接触する鋼材面には植物性油を塗布しておく。

PC 鋼棒の長さを調整して、ロードセル荷重がほぼゼロとなるように面接触させる。 なお、注入圧によってロードセルが感知する荷重に蓋状鋼材、通し桁、ロードセル荷重 を加えた荷重を注入圧による浮上り反力とする。

図 2.2.2-1 実験装置概要図

実験装置の設置状況写真を以下に示す。

図 2.2.2-2 蓋状鋼材への植物性油塗布状況 図 2.2.2-3 ゴムチューブの蓋状平板への設置状況

図 2.2.2-4 実験装置近景

計測項目は、実験毎に以下の通りとする。

① 加水圧実験:注入圧、ロードセル荷重、蓋状鋼材上面中央部温度

② 充填材加圧注入実験:注入圧、ロードセル荷重、蓋状鋼材上面中央部温度、テストピー ス内温度、外気温、蓋状鋼材浮上り変位

図 2. 2. 2-5 計測器設置概要図

2.3 材料選定検討

2.3.1 ゴムチューブ

 必要とされる性能と設定基準 ゴムチューブに必要とされる性能と設定基準を表 2.3.1-1 に示す。

表 2.3.1-1 ゴムチューブ選定基準

2) 材料の選定

前述の選定基準を踏まえて、材料の選定を行った。ゴム材質には、用途に合わせて非 常に多くの種類が存在するため、広く用いられており、加工性も良い材質である天然ゴ ム、クロロプレンゴム、エチレンプロピレンゴム及びスチレンブタジエンゴムを取り上 げて、選定を行った。比較表を次表に示す。選定表から、多くの項目で平均以上の特性 を有するクロロプレンゴム (CR) を選定した。

表 2.3.1-2 ゴム材質選定表

(出典:「Daiichi ゴム加工.com」HP)

なお、上記4種類のゴムに対して、ゴムメーカーに依頼して耐熱性試験による比較を 行った。その結果を下表に示す。表中、NB603 は天然ゴム、NT618 はスチレンブタジ エンゴム、NM605 はクロロプレンゴム、EPT6510 はエチレンプロピレンゴムである。 クロロプレンゴムは諸項目の変化が全体的に小さくなっている。

	項目	単位	天然ゴム (NB603)	スチレンフ [゛] タシ [゛] エンコ [゛] ム (NT618)	クロロプ レンコ ム (NM605)	エチレンフ [°] ロヒ [°] レンコ [・] ム (EPT6510)	試験方法
	引張強さ変化率	%	+4	+3	+7	+5	
熱老化試験	伸び変化率	%	-14	-10	-5	-4	JIS K6257
	硬さ変化	-	+4	+4	+2	+1	
圧縮永久ひす	ずみ	%	25	20	13	15	JIS K6262

表 2.3.1-3 耐熱性試験結果

クロロプレンゴムに対して、前述の設定基準を満足するものを選定した結果を下表に示 す。 なお、クロロプレンゴムは、ボックスカルバートの可とうジョイント等に用いられ ており、長期安定性に関する実績を有していると考えられる。

<u> </u>	<u>05 (CRJ 4</u>)		
項目	単位	測定值等	判定	備考
伸び	%	400	>200 OK	
引張強さ	N/mm2	8.9	>5.30K	
弾性係数	N/mm2	2.58	≦2.6 OK	ν=0.5として, F=3Gより算出

表 2.3.1-4 クロロプレンゴム選定結果

3) ゴム厚の選定

セメントミルク加圧注入時において、ゴムチューブの破断が発生しないように配慮す る必要がある。留意すべき点として、補強リングと既設トンネル内面に発生することが 考えられるすき間が挙げられる。このすき間については、既設トンネル内面の不陸、加 圧注入時の補強リングおよび既設トンネル内面の変位、補強リング製作誤差といった要 因が考えられる。

ここでは、補強リング製作誤差の累積によるすき間を試算し、このすき間程度のゴム 厚を選定するものとする。その他の要因に対する対策は別途検討を行う。

補強リング弧長の製作誤差をセグメントの製作誤差±1.5mm と同等とし、補強リング 弧長を 3m 前後として、補強リング1ピースの弧長が全て-1.5mm の製作誤差とした場 合の誤差累積による補強リング径の大きさと誤差 0mm とした場合の補強リング径の差 を求める。

既設トンネル内径 5~10m 程度では、上記のすき間は 3~5mm 程度となっている。よって、ゴム厚を 5mm として加圧実験を行う。

図 2.3.1-1 補強リング と既設トンネルとのすき間の模式図

補強リング製作誤差の設定
 製作誤差-1.5mmの補強リング組立時の状況
 図 2.3.1-2 補強リングの製作誤差によるすき間の推定模式図

既設トンネル 内径(m)	補強リンク 分割数	補強リンク 1ピース 弧長(m)	弧長製作誤差 (-1.5mm)累積 時の補強リング 外径(m)	既設トンネル内 面と補強リング 間のすき間 (mm)
5	6	2.618	4.997	3
6	6	3.142	5.997	3
7	8	2.749	6.996	4
8	8	3.142	7.996	4
9	10	2.827	8.995	5
10	10	3.142	9.995	5

表 2.3.1-5 補強リングの製作誤差によるすき間の算定結果

2.3.2 充填材

必要とされる性能と設定基準
 充填材に必要とされる性能と設定基準を表 2.3.2-1 に示す。

項目	内容					
長期安定性	 ・本設構造物であり、長期安定性が求められるため、セメント系の硬化材を用いる。 					
ゴムへの影響	・加圧注入時にゴムを損傷する可能性を極力減らすために、骨材を用いないセメントミル ク系の材料を用いる。	セメントミルク系				
充填性	 ・設置したゴムチューブ内 に閉塞することなく充 填される必要がある。 ゴ ムチューブ 広力受板 (ゴムプロック) (ゴムプロック) 基状平板加圧試験架台断面図 	5mm程度のす き間の充填 性確保				
流動性保持時間 (時間)	・注入圧調整などに要する間の流動性が必要である。	≧2時間				
硬化時収縮量	・硬化時に収縮が発生すると、加圧力が減少する。					
圧縮強度 (N/mm2)	 ・注入圧0.3MPa (=0.3N/mm2)を上限と考えれば、圧縮強度は安全率3を用いて、0.9N/mm2 程度でよいが、長期的な応力の保持を考えれば、圧縮強度は高い方が良い。 					
(弾性係数) (N/mm2)	・長期的な応力の保持を考えれば、弾性係数は高い方が良い。	圧縮強度にて選定				

表 2.3.2-1 充填材選定基準

2) 材料の選定

前述の選定基準を踏まえて、材料の選定を行う。セメントミルク系の材料として、PC グラウト等に用いられる材料と空洞充填等に用いられる材料が代表的と考えられる。材 料メーカーなどにヒアリングを行い、性状の比較を行った。なお、空洞充填用材料につ いては、既成材料では流動性保持時間が設定基準を満足していなかったため、メーカー に配合検討・配合試験を依頼し、流動性保持時間を満足する配合を設定し、性状の比較 を行った。

PC グラウト材は、設定基準に対して全てを満足しており、硬化材として十分適用可能 と考えられる。空洞充填材料については、硬化時収縮量は若干発生しているが、硬化材 として適用の可能性はあると考えられる。ここでは、加圧効果の確認が目的であること から、PC グラウト材を用いることとする。

材料特性/用途	一般名称/品名	項目	単位	内容等	判定
		充填性	-	1mm程度の間隙充填可能	≦5mm OK
		流動性保持時間	時間	練上がり6時間で7□-値270mm	≧2時間 OK
セルフレヘ゛リンク゛性 /PCク゛ラウト	ブレミックス高流動無収縮注入材 /エスセイバーPC	硬化時収縮量	-	密閉状態なら、材齢28日経過 後も膨張側	無収縮性 OK
		圧縮強度	N/mm2	材齢7日で42.3N/mm2	\geq 10N/mm2 OK
		(弾性係数)	kN/mm2	材齢7日で13.9kN/mm2	—
可塑性 /空洞充填	可塑性グラウト材 /パフェグラウト(特殊配合)	充填性	-	3mm程度の間隙充填可能	≦5mm OK
		流動性保持時間	時間	練上がり2時間で7□-値270mm	≧2時間 OK
		硬化時収縮量	-	材齢28日で0.104%収縮側	≒無収縮性 △
		圧縮強度	N/mm2	材齢7日で25.5N/mm2	≧10N/mm2 OK
		(弾性係数)	kN/mm2	材齢7日で7.6kN/mm2	_

表 2.3.2-2 充填材比較表

2.3.3 間詰材

ゴムチューブの端部にはゴムチューブ幅よりも幅広い端部閉止金具を配置して注入圧を 保持するため、ゴムチューブー般部では、ゴムチューブと補強リングの離隔が大きくなる。

ゴムチューブと補強リング間の離隔が大きいと、硬化材加圧注入時にゴムチューブの伸びが大きくなり、圧力ロスを助長することになる。そこで、ゴムチューブと補強リングの 離隔が大きい個所には間詰材を配置するものとする。補強リングの構造を変更することも 考えられるが、構造が複雑になるため、間詰材による対処とする。

間詰材としては、セメントミルク注入・硬化が考えられるが、ゴムチューブ内の空間保 持のための措置が必要になること、間詰材の注入作業が必要になることならびに間詰材硬 化までの作業待ち時間が発生することといった問題がある。

そこで、ゴムチューブと補強リング間の離隔が大きい個所には、ゴムブロックを配置し て、ゴムチューブと補強リング間の離隔を小さくすることにする。ゴムブロックを予め補 強リングに接着などによって取付けておくことによって、セメントミルク注入・硬化の場 合の問題は発生しない。

なお、ゴムブロックの材質については、ゴムチューブと同様とする。

2.4 加水圧実験結果

2.4.1 加水圧過程

次図に示すように、段階毎に圧力保持時間を設けて漏水などによる圧力減少などが発生 しないか確認する。

圧力センサーのキャリブレーション時に、ボールバルブ(1)を閉止して圧力保持を行って いる間に圧力センサーの値が低下する現象が見られた。これは、注入ホースのクリープ現 象などに起因するものと考えられる。

そこで、加水圧過程においては、0.3MPa まで加圧した後で2時間圧力保持を行い、その後、再度0.3MPa まで加圧して24時間圧力保持を行い、最後に0.35MPa まで加圧して 16時間圧力保持を行って、それぞれの圧力保持時間内での圧力センサーの指示値の状況を 計測することとした。

最初に 0.3MPa まで加圧した後、2 時間後に 0.3MPa まで再加圧を行うのは、再加圧に よって圧力の低下幅を小さくできるか否かを確認するためである。

また、0.35MPa までの加圧を行うのは、ゴムチューブの耐圧力性を確認することならびに 圧力の低下幅が最大加圧力によって変化するか否かを確認するためである。

なお、グラウト材凝結の始発時間が練上り後 13 時間 00 分であることから、0.3MPa 圧 力保持(2回目)ならびに 0.35MPa 圧力保持の時間をこの時間よりも長く設定した。

図 2.4.1-1 加水圧過程

2.4.2 実験結果

水圧の経時変化状況を次図に示す。

1回目の0.3MPa 圧力保持期間(2時間)に水圧は46KPa、2回目の0.3MPa 圧力保持期間(24時間)に水圧は63KPa、0.35MPa 圧力保持期間(16時間)に水圧は63KPa 低下しており、2回目の0.3MPa 圧力保持期間(24時間)の水圧低下状況からすると、24時間以降も水 圧低下は徐々にではあるが継続するものと考えられる。

浮上り反力の経時変化状況を次図に示す。

浮上り反力の経時変化は、水圧の経時変化に類似しており、水圧に対応して反力が変化 していることがわかる。

1回目の 0.3MPa 圧力保持期間(2時間)に浮上り反力は 6.6kN、2回目の 0.3MPa 圧力保持 期間(24時間)に浮上り反力は 10.5kN、0.35MPa 圧力保持期間(16時間)に反力は 12.1kN 低下している。

水圧と浮上り反力の関係を次図に示す。図中、破線は水圧がロス無く蓋状平板を押し上 げる場合の計算値(水圧全体)とゴムチューブの張力によるロスを考慮した場合の計算値 (ゴム張力控除)を示す。なお、これらの破線が原点を通らないのは、蓋状平板より上部 の鋼材重量 4.39kN を考慮しているためである。

加圧過程において、水圧と浮上り反力の関係は計算値(水圧全体)と計算値(ゴム張力 控除)の中間に位置している。圧力保持期間に関しては、水圧の低下に対する浮上り反力 の低下が加圧過程に比べて緩やかになっている。これは、ゴムのクリープ特性によるもの と考えられる。

図 2.4.2-4 計算值算定説明模式図

圧力保持時間内に低下する水圧と浮上り反力について、圧力保持開始時の最大値に対す る比率と経過時間の関係を次図に示す。図中の回帰値は、経過時間と1-水圧比、1-浮上り 反力比について対数を取り、この関係を多項式によって回帰したものである。多項式は 4 次に統一している。

0.3MPaの1回目と2回目の圧力保持では、2回目の方が水圧、浮上り反力ともに低下率が小さくなっており、再加圧の効果が表れている。

充填材凝結時間(外部雰囲気温度 20℃で、始発:13時間 00分、終結:17時間 10分) を目安とすれば、再加圧を行うことによって水圧ならびに浮上り反力の有効分は圧力保持 開始時点の値に対して、水圧 80%程度、浮上り反力 85%程度と考えられる。

図 2.4.2-6 浮上り反力比経時変化
なお、次図に蓋状平板上面に貼り付けた熱電対による温度の経時変化を示す。計測初日 は曇天で日中の温度変化はほとんどなく、2日目は晴天で温度の上昇・下降が見られる。 計測期間中の温度差は4℃程度であり、著しい温度の変化はなかったといえる。

2.4.3 加水圧実験結果のまとめ

・ゴムチューブは加水圧 0.35MPa に対しても、漏水など無く、圧力を保持できることを 確認した。

・水圧と浮上り反力の関係は、加圧過程において比例関係にあり、計算値(水圧全体)と 計算値(ゴム張力控除)の中間に位置していた。

・圧力保持 {加水圧後ボールバルブ(1)を閉止した状態} 期間において、注入ホースならび にゴムチューブのクリープに起因すると考えられる圧力低下ならびに浮上り反力低下が認 められた。

・再加水圧を行うことによって、上記の圧力低下ならびに浮上り反力低下を抑える効果が あることを確認できた。

2.5 充填材加加圧注入実験結果

2.5.1充填材の練混ぜ
充填材名:エスセイバーPC(プレミックス材)
配合:エスセイバー20kg:水 6.25ℓ
練上り量:13ℓ
1缶目練上り時刻:15時15分
練上り温度:24.5℃
簡易テーブルフロー試験値:295×295
練混ぜ状況を以下に示す。

① 充填材計量状況

3 練混ぜ状況

⑤ 簡易テーブルフロー測定状況-1

図 2.5.1-1 充填材練混ぜ状況

② 水計量状況

④ 練上り温度測定状況

⑥ 簡易テーブルフロー測定状況-2

標準供試体による充填材の圧縮強度および弾性係数を下表に示す。発現強度は、充填材 カタログ値よりも若干大き目であり、弾性係数は技術資料における圧縮強度に対する回帰 値よりも若干小さめに推移している。

材齢(日)	3	7	14	28
圧縮強度 (N/mm2)	38.2	77.1	95.6	108
弾性係数 (kN/mm2)	12.2	19.0	-	22.4

2.5.2 加圧注入過程

次図に示すように、段階毎に圧力保持時間を設けて、漏水などによる圧力減少などが発 生しないか確認する。

加水圧実験において、再加水圧を行うことによって上記の圧力低下ならびに反力低下を 抑える効果があることを確認できたことから、一旦 0.3MPa まで加圧注入して 1 時間ボー ルバルブ(1)を閉止したのち、再度 0.3MPa まで加圧注入を行うこととした。

図 2.5.2-1 加圧注入過程

当初、手押しポンプによる加圧注入を行ったが、0.2MPa への加圧注入が困難となった ため、スクイズポンプに切り替えて加圧注入を行った。

① 手押しポンプ使用状況

② スクイズポンプ

図 2.5.2-2 加圧注入状況

最大加圧力目標値 300kPa (0.3MPa) に対して、1 回目の加圧値は、297KPa、再加圧 値(1時間経過後)は、321KPa となった。

2.5.3 実験結果

1) 圧力センサー値

圧力センサー値の経時変化状況を図2.5.3-1に示す。

(1) 再加圧の効果

1回目の 0.3MPa 圧力保持期間(1時間)に圧力センサー値は 297KPa から 272KPa に 25KPa 低下し、2回目の 0.3MPa 圧力保持期間(1時間)に圧力センサー値は 321KPa から 299KPa に 22KPa 低下している。加水圧実験で一度 0.3MPa まで加圧したゴム チューブを使用したためと思われるが、再加圧の効果は小さいと考えられる。

(2) 経時変化

充填材の凝結については、雰囲気温度 20℃で始発が練上り 13 時間 00 分後、終結 が 17 時間 10 分であり、今回もこの時間があてはまるとすれば、始発時間以降、圧力 センサーの値は液圧ではなく、徐々に硬化していく固体の圧力を感知しているものと 考えられる。

圧力センサー値は、練上り後 24 時間程度で 150KPa まで低下した後、練上り後 120 時間程度で 215KPa まで上昇し、その後、計測期間内では徐々に低下している。練上 り後 24 時間以降の圧力上昇については、充填材に含まれる膨張材の効果が表れてい るものと考えられる。

2) 浮上り反力値

浮上り反力の経時変化状況を図 2.5.3-2 に示す。

(1) 再加圧の効果

1 回目の 0.3MPa 圧力保持期間(1時間)に浮上り反力は 61.6kN から 56.7kN に 4.9kN 低下し、2回目の 0.3MPa 圧力保持期間(1時間)に反力は 65.8kN から 63.0kN に 2.8KPa 低下している。圧力センサー値では、再加圧の効果は小さいと考えられた が、浮上り反力については、再加圧の効果は小さくないと考えられる。

(2) 経時変化

浮上り反力は、ボールバルブ(1)閉止後、圧力センサー値の減少傾向に比べて緩やか に低下し、練上り後 24 時間以降も、計測終了時点まで若干の変動を繰返しながらわ ずかな減少を続けている。圧力センサー値に見られたような、浮上り反力の増加現象 は発生していない。計測終了時点での浮上り反力値は 53.2kN であり、浮上り反力の 減少量は 12.6kN(=65.8-53.2)となっている。

なお、各ロードセル計測値の浮上り反力平均値に対する比率は、最大圧力時で±4% 以内、計測終了時点で±9%以内となっている。

図 2.5.3-1 圧力センサー値の経時変化図

3) 圧力と浮上り反力の関係

圧力と浮上り反力の関係を図 2.5.3-3 に示す。なお、図中の計算値については、図 2.4.2-4 参照。

図中、破線は注入圧がロス無く蓋状平板を押し上げる場合の計算値(注入圧全体)と ゴムチューブの張力によるロスを考慮した場合の計算値(ゴム張力控除)を示す。なお、 これらの破線が原点を通らないのは、蓋状平板より上部の鋼材重量 4.39kN を考慮して いるためである。

加圧注入過程において、150KPa 程度までは注入圧と浮上り反力の関係が激しく変化 しているが、これは手押しポンプ使用時の計測値であり、スクイズポンプ使用後は、注 入圧と浮上り反力の関係はほぼ直線関係と考えられる。加圧注入過程(スクイズポンプ 使用時)において、注入圧と浮上り反力の関係は計算値(注入圧全体)と計算値(ゴム 張力控除)の中間に位置している。

圧力保持期間に関しては、圧力は増減するものの、浮上り反力は加圧過程に比べて緩 やかに低下している。

図 2.5.3-3 圧力と浮上り反力の関係

4) 変位計測定値

変位計による蓋状鋼板の上方向への変位量の分布図を下図に示す。図中には、最大注入圧時と最終計測時の変位分布を示している。

変位量は、最大注入圧時に中央部で約2.3mm、端部で約1.2mm となっており、中央 部で変位量が若干大きくなっている。この分布形状は最終計測時においても同様である。 最大注入圧時と最終計測時の変位差は端部で最大0.17mm、全体平均で0.11mm とな っている。

図 2.5.3-4 蓋状鋼板変位分布図

5) 温度測定值

温度の経時変化を下図に示す。

外気温は、練混ぜから最終計測時まで概ね 20±3℃の範囲にあり、実験期間中に急激な 外気温変化は見られない。

標準供試体内温度および蓋状鋼板上面中央部温度は、練上り6時間後頃から上昇し始め、 終結時から24時間頃まで横這い状態を示し、それ以降、外気温の変動に追随しながら徐々 に低下している。

図 2.5.3-5 温度経時変化図

6) 充填硬化体の状況

充填硬化体の状況を以下に示す。

ゴムチューブを蓋状鋼板から取り外く際、ゴム表面と鋼材面が塗布していた油によって接着状態にあり、硬化体の折れ、ゴムの破れが生じたため、ゴムチューブを剥ぎ取って充填硬化体の状況を確認した。

図 2.5.3-6 充填材硬化後ゴムチューブ状況

両端部閉止金具付近の充填硬化体の幅は 260mm であることから、ゴムチューブは幅 方向に両側のゴムブロックに接する状況であったと考えられる。

中央部付近の幅は充填硬化体の幅は 265mm であることから、ゴムチューブは幅方向 に 2.5mm ずつ圧縮された状態で両側のゴムブロックに接する状態であったと考えられ る。

中央部付近の充填硬化体の厚さは約 28.7mm であり、蓋状鋼板内高 35mm と中央部変 位量 2.3mm を考えると、ゴムチューブは、0.7mm 程度圧縮された状態であったと考え られる。

両端部の充填硬化体の厚さも測定したが、エア溜まりの発生が認められることから、 ゴムチューブの圧縮量の推定は難しい。

図 2.5.3-7 充填材硬化後形状確認状況

蓋状鋼板内面の状況を以下に示す。内面には塗布した油がゴムチューブの接触によって 拭い去られた状況が見受けられる。その範囲の寸法を写真中に示す。この寸法からゴムチ ューブの接触面積を算定すると、233,938mm²となり、(270-29)mm×(1000-29)mm 程度に 相当すると考えられる。なお、前述のエア溜まりの面積は、48,300mm²程度であり、ゴム チューブの接触面積の約 22%(注入孔・エア抜孔考慮)となる。

図 2.5.3-8 蓋状平板裏面状況

2.5.4 浮上り反力の経過試算

0.3MPaの加圧下において、PC グラウト材が硬化する際の伸長ないしは収縮ひずみについて考える。なお、充填硬化体とゴムチューブ間の空気層の影響については、ここでは考慮しないものとする。

コンクリートにおいては、自己収縮、乾燥収縮、クリープが収縮ひずみの主な要因とな る。この中で、クリープについては、荷重の載荷材齢とそのときの弾性係数が問題となる が、本件のように、フレッシュな状態から加圧された状態で硬化過程を迎えるような場合 には、荷重の載荷材齢・弾性係数の設定が難しい。なお、本件の場合、PC グラウト材は ゴムチューブ内に密封された状態であることから、乾燥収縮の影響は考慮しないものとす る。

1) PC グラウト材の自己収縮ひずみの仮定

ここでは、雰囲気圧を 3 気圧まで上昇させた状態で、セメントペーストの自己収縮ひずみを測定した実験結果¹⁾を参考に、本件の PC グラウト材が 4 気圧下(≒ 0.3MPa 加圧)で硬化した場合の自己収縮ひずみを試算する。

実験結果¹⁾では、雰囲気圧を凝結の始発前から上昇させて、セメントペーストを 硬化させると収縮ひずみが増加することを示している。W/C=30%、開放面無しの場 合の材齢7日に着目(普通ポルトランドセメント使用)して、模式図に示す 0.3MPa 加圧下硬化による自己収縮ひずみ比率αを求めると、α=1.64となる。

なお、PC グラウト材の使用セメントは高炉セメント B 種、W/C は 31.3%であり、 実験結果¹⁾の条件とは異なる。また、実験結果¹⁾では 4 気圧下での実験は行われて いない。

図 2.5.4-1 各雰囲気圧の影響(W/C=30%実験値):

出典:山下ほか、「極初期材齢におけるセメントペーストの収縮挙動に関する研究」 コンクリート工学年次論文集, Vol. 27, No. 1, 2005

図 2.5.4-2 加圧下における自己収縮ひずみ設定模式図

一方、大気圧下での PC グラウト材の自己収縮ひずみについては、膨張材が使用され ているため、材料メーカーにおいても、自己収縮ひずみの測定は行われていない。ここ では、文献²⁾を参考にして、自己収縮ひずみの値と経時変化を設定する。高強度コンク リートの自己収縮ひずみの予測式は次式となっている。

$\varepsilon_{as}'(t) = \gamma \varepsilon_{as\infty}' \left[1 - \frac{1}{2}\right]$	$\exp\left\{-a\left(t-t_{s}\right)b\right\}\right]$			(解 5.2.13)			
$arepsilon_{as}(t)$:凝結の	始発から材齢 tまでの	コンクリートの自己	収縮ひずみ(×10-6)				
y :セメン	トおよび混和材の種類	の影響を表す係数((普通ポルトランドセ	メントのみを用いる場			
合 1.0	としてよい.)						
ε′ _{as∞} :自己収	縮ひずみの最終値(×	(10-6)		· · · · · · ·			
$\varepsilon'_{as\infty} = 3$	$3070 \exp\{-7.2(W/C)\}$			(解 5.2.14)			
W/C :水セメ	ント比						
t_s :凝結の	始発(日)						
a, b : 自己収	縮の進行特性を表す係	《数. 解説 表 5.2.4 W	こ示す値を用いてよレ	٠.			
	解説表 5.2.4 式	代 (解 5.2.13) におけ	る係数 a, b の値				
	W/C	а	b				
	0.20	1.2	0.4				
	0.23	1.5	0.4				
	0.30	0.6	0.5				
	0.40	0.1	0.7				
	0.50 以上	0.03	0.8				
	結合材に普通ボルトランドセメントのみを用いた場合の値						

出典:コンクリート標準示方書(設計編)(2007年制定 土木学会)

自己収縮ひずみの最終値 $\epsilon'as_{\infty}$ を求めるについては、高炉セメント B 種について実験 的に求めた文献³⁾に基づいて設定する。このときの $\epsilon'as_{\infty}(=\epsilon ao)$ の算定式は次式となっ ている。

> $\varepsilon_{ao} = 2350 \exp\{-5.8(W/C)\} + 80 \times \left[1 - \exp\{-1.2 \times 10^{-6} \times (T_{max} - 20)^{4}\}\right]$ $T_{max} : コンクリートの最高温度(°C)$

出典: 宮澤ほか、「高温履歴を受ける高炉セメントコンクリートの自己収縮予測式」 コンクリート工学年次論文集, Vol. 30, No. 1, 2008

ここで、W/C=0.3、Tmax=24.5℃とすると、 $\epsilon'as_{\infty}=413 \mu$ となる。コンクリート 1m³ 当たりのセメントペーストの占める割合は 1/4 程度と考えられることから、セメントペ ーストについての自己収縮ひずみの最終値としては、上記の値を 4 倍した値とする。 $\epsilon'asp_{\infty}=4\times413=1652 \mu$ となる。これを、PC グラウト材の潜在的な自己収縮ひずみの最終 値と仮定する。

また、文献³⁾において高炉セメント B 種に対する自己収縮ひずみの進行特性は次式 で表わされるとしている。

$$a = 3.7 \exp\{-6.8 \times (W/C)\} \times (0.060T_{max} - 0.20)$$

$$b = 0.25 \exp\{2.5 \times (W/C)\} \times (-0.0075T_{max} + 1.15)$$

出典: 宮澤ほか、「高温履歴を受ける高炉セメントコンクリートの自己収縮予測式」 コンクリート工学年次論文集, Vol. 30, No. 1, 2008

上記の式で、W/C=0.3、Tmax=24.5℃とすると、a=0.61, b=0.51 となる。文献³⁾では γ=1.0 としており、高炉セメントコンクリートにおける自己収縮ひずみの経時変化とし て図 2.5.4-3 に示す。

セメントペーストについての自己収縮ひずみの経時変化の割合はこの関係に準じるものとする。

このように算出した自己収縮ひずみは大気圧下での値であることから、この値に前述の 0.3MPa 加圧下硬化による自己収縮ひずみ比率 α を乗じて、加圧硬化時の自己収縮ひずみとしてみる。

2) PC グラウト材中の膨張材の膨張効果(伸長ひずみ)の仮定

今回使用する PC グラウト材については、次図に示すような硬化に伴う長さ変化試験 が行われている。図中、ダイヤルゲージのデータは、練混ぜ後1日経過した時点からの データであり、埋め込みゲージのデータはほぼ凝結の始発時間からのデータである。以 降、ダイヤルゲージのデータを用いる。

図 2.5.4-4 長さ変化測定方法 出典:エスセイバーPC技術資料(日鐵住金高炉セメント)

図 2.5.4-5 長さ変化経時図 出典:エスセイバーPC技術資料(日鐵住金高炉セメント)

PC グラウト材の長さ変化試験では、封かんした状態では膨張材の効果によって材齢 56日においても伸長側の変化を示している。PC グラウト材にも潜在的な自己収縮ひず みは存在することから、膨張材の効果を下図の模式のように、長さ試験結果のひずみか ら自己収縮ひずみの差と仮定する。ここで、PC グラウト材の潜在的な自己収縮ひずみ に前節で仮定した値を用いて、1 気圧(大気圧)下での PC グラウト材の膨張材の効果 を伸長ひずみとして表わしてみる。

なお、PC グラウト材の伸長ひずみの発生時期としては、前述の圧力センサー経時変 化で圧力値が最も減少した 24 時間後とする。

1 気圧(大気圧)下での PC グラウト材の硬化時のひずみ経時変化を下図に、自己収縮 ひずみと伸長ひずみの値を表 2.5.4-1 に示す。

-43-

材齢(日)	自己収縮 ひずみ(11)	長さ試験 ひずみ(µ)	伸長 ひずみ(µ)
0.542(始発)	0	0	0
1 (終結)	-576	0	0
2	-884	1080	1388
8	-1350	1560	2334
15	-1499	1580	2503
29	-1594	1020	2038
57	-1637	680	1740

表 2.5.4-1 PC グラウト材の硬化時ひずみ(大気圧下)

注) ひずみは収縮を一, 伸長を+とする

3) **PC** グラウト材のひずみ変化の設定

0.3MPa 加圧下での凝結始発後のひずみ変化が、自己収縮ひずみと前述の伸長ひずみ の重ね合せで表わされるものと仮定する。ただし、伸長ひずみは凝結終結後(練上り24 時間後とする)から現れるものとする。

0.3MPa 加圧下での自己収縮ひずみとして、大気圧下の自己収縮ひずみを前述のα倍 する。

0.3MPa 加圧下での膨張材の効果による伸長ひずみとして、CASE-1:大気圧下での伸 長ひずみをそのまま用いる、CASE-2:大気圧下での伸長ひずみをαで除す、CASE-3: 伸長ひずみ無しの3ケースを考える。

このひずみを用いて、ゴム圧縮応力の増減値および本実験における浮上り反力の増減値を求める。

これを、浮上り反力の経時変化図の始発以降にあてはめると、次図のような浮上り反力経時変化の推定値となる。

浮上り反力の計測値は、CASE-3よりも1~2kN程度小さ目で推移している。

図 2.5.4-8 浮上り反力経時変化予測値と実測値

仮定を重ねることになるが、浮上り反力の将来予測を行うために、自己収縮ひずみの 最終値 ε'as_α、加圧下硬化による自己収縮ひずみ比率αを変化させて計測データのフィッ ティングを行った結果を表 2.5.4-2 に示す。

フィッティングを行った各ケースに優劣をつけることはできないが、充填材中の膨張 材の効果は存在するものと考えて、ここでは、CASE-2のフィッティングを自己収縮ひ ずみの最終値 ε'as_∞と加圧下硬化による自己収縮ひずみ比率αによって行ったケースを 用いて、浮上り反力の将来予測を行う。下図に 60 日程度までの浮上り反力の予測図を 示す。

図 2.5.4-9 浮上り反力経時変化予測値

コンクリート標準示方書によれば、高強度コンクリートの自己収縮ひずみは、3 か月 程度で最終値となり、60日では最終値の 99%に達する。したがって、上図の予測から すると、浮上り反力の最終値は 50kN(実験時の鋼材重量を考慮すると 54.4kN)程度と 考えられる。

なお、長期的なゴムの劣化の影響などについては、課題として残る。

1/A 2 0 12/2 12	k_7	c ' 0000	01	表2.5.4-2 浮上り) 深上山戸市経時亦化図	支力フィッティ:	ング試算表 s'aa∞	<i>a</i> 1	湾上山后市経時亦ル団
$\begin{bmatrix} -\frac{1}{2} \frac{1}{2} \frac$	7-A	≿ as∞o	α	子上り反刀樦吁変16凶	17-X	£ as∞	α	
$\begin{array}{c c} CASE-30\\ 2/77/29^{-}\\ 1.51\\ 1.52\\$	予測値 (ベース)	413μ (1.0)	1.64 (1.0)	0 (m) (m)	CASE-3の フィッティング- 3	496 μ (1.2)	1.97 (1.2) (開放面有 りの場合 の比率以 内]	ло
$\begin{bmatrix} CASE-30 \\ 7(77/2)^{2} \\ 2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$				70				70
CASE-30 7(77/2) ⁷ - 2 (1.0) 2 (1.0) (開放面音 收)均場合の 比率適用) 50	CASE-3の 7イッティンヴー 1	620 μ (1.5)	1.64 (1.0)	60 72 84 96 108 12 144 156 168 40 12 24 36 60 72 84 96 108 120 132 144 156 168	CASE-2の フィッティングー 1	620 μ (1.5)	2.1 (1.3) (開放面有 りの場合の 比率適用)	60
CASE-30 2/7 ディンゲー 2 413 μ (1.0) 期版面有 比率適用 (1.0) (70		•		
40 10 12 24 36 48 60 72 24 96 108 120 132 144 156 168	CASE-3の 7イッティンヴー 2	413 μ (1.0)	2.1 (1.3) (開放面有 りの場合の 比率適用)	60 60 60 60 60 60 60 60 60 60				

 $-47 - \sim -48 -$

4) 加圧注入の残存効果

0.321MPa の加圧注入による浮上り反力計算値(注入圧全体)に対する浮上り反力予測 値の比率を計算すると下表のようになる。

加圧注入時の浮上り反力は加圧注入圧による浮上り反力計算値の 85%、充填材の材齢 60日程度における浮上り反力予測値の 66%となっている。

実験に際して、0.2MPa相当の浮上り反力を得るために加圧注入圧を割増して 0.3MPa による加圧注入を行ったが、充填材の注入過程及び硬化による自己収縮過程を経て得ら れる浮上り反力の予測値は、ほぼ予定通りの結果を示している。

表 2.5.4-2 浮上り反力の比率

加圧注入圧 (MPa)	加圧注入時の 浮上り反力計算値 (注入圧全体)a(kN)	加圧注入時の 浮上り反力b(kN)	浮上り反力 予測値c(kN)	b/a	c/a
0. 321	82.6	70. 2	54.4	85%	66%

注) 表中、bと c の値については、実験装置の鋼材重量4.4kNを加算した値

5) 加圧注入時の管理方法

施工時には、加圧注入圧が管理項目として挙げられる。ただし、加圧注入圧によって 既設トンネルならびに補強リングに発生する反力などは、上記のようにフェーズによっ て異なることから、事前にそれらの値を把握しておく必要がある。本技術の適用実績が 少ないうちは、事前に試験施工ないしは予備実験を行って、加圧注入圧に対する各フェ ーズでの反力値を把握してすることが考えられる。また、本施工に際しては、加圧注入 圧ならびに既設トンネルならびに補強リングに設置した感圧センサーによる圧力を管理 項目とすることも考えられる。

2.5.5 まとめと課題

- 1) まとめ
 - ・充填材の硬化過程で浮上り反力が消失するような事象は見られなかった。

 ・所定の浮上り反力を充填材の硬化過程後に得るためには、所定の浮上り反力に対応 する加圧注入圧の1.5倍程度の加圧注入圧とする必要がある。

2) 課題

・充填材の硬化過程における浮上り反力の経時変化を把握するためには、3か月程度
 以上の長期的な実験を検討することが望ましい。

- ・エア溜まりを解消する対策を検討することが望ましい。
- ・ゴム劣化の影響を把握するための劣化促進試験を検討することが望ましい。
- ・剛性の低い(実際に則した)蓋状鋼板を用いて加圧注入時のゴムチューブの追随性、 コストダウンのためのゴムチューブ構造の簡素化を検討することが望ましい。

・施工時には加圧注入圧が管理項目として挙げられるが、事前に加圧注入圧によって 既設トンネルならびに補強リングに発生する反力などを把握しておく必要がある。

2.5節 参考文献

- 1) 山下ほか、「極初期材齢におけるセメントペーストの収縮挙動に関する研究」コン クリート工学年次論文集, Vol. 27, No. 1, 2005
- 2)「コンクリート標準示方書(設計編)」(2007年制定 土木学会)
- 3) 宮澤ほか、「高温履歴を受ける高炉セメントコンクリートの自己収縮予測式」コン クリート工学年次論文集, Vol. 30, No. 1, 2008

第3章 補強技術の成立性確認のための解析的検討

3.1 補強技術の成立性確認のための解析的検討ステップ

本技術を既設トンネルに適用する場合の成立性については、以下の2段階について確認 する。

3.1.1 充填材加圧注入時

・充填材硬化後残存圧力作用時の安全性

充填材加圧注入時・充填材硬化後残存圧力作用時については施工手順を確認する必要が あるため、図 3.1.1-1 に主要な施工手順を示す。

補強区間に対して、施工時間・充填材加圧注入可能量などから1回の施工範囲を設定し、 施工範囲毎に補強リングの組立・充填材加圧注入を繰返し行う。

補強リングの組立に際しては、エレクター、フィーダーならびに門型クレーンの機能を 持つ施工機械の使用を想定しているが、補強リングの仕様、施工条件によってはより簡易 な施工方法を検討する。

充填材加圧注入においては、施工範囲における加圧注入を一斉に行うために多点注入の 機能を持つグラウトポンプの使用を想定している。補強リング内の充填材加圧注入を分割 (ゴムチューブを補強リング内で分割)して行う場合についても、施工範囲内の充填材加 圧注入は一斉に行うものとする。

このような施工手順を踏まえることによって、加圧注入圧を受けるセグメントリングと 加圧注入圧を受けないセグメントリングが隣接することが、充填材加圧注入時には補強区 間内の施工範囲端部において、充填材硬化後残存圧力作用時においては補強範囲両端部に おいて発生することになる。

また、着目するセグメントリングへの加圧注入を終えたのちに、隣接セグネントリング への加圧注入を行った場合の着目リングに及ぼす影響についても検討するものとする。

充填材加圧注入時には加圧注入圧を上げ越す必要があることが要素実験で確認されてお り、1 リング毎に設置した補強リング内への充填材加圧注入を行うことによって、既設ト ンネルのセグメント、セグメント間継手ならびにリング間継手に過大な作用力が発生しな いことを確認する必要がある。この場合の荷重の取扱いは一時的な荷重と考える。また、 充填材硬化後残存圧力作用時では、補強対象区間端部のセグメントリングと隣接するセグ メントリング間のリング間継手に過大な作用力が発生しないこと、着目セグメントリング への隣接セグメントリングへの圧力作用の影響を確認する必要がある。この場合の荷重の 取扱いは常時荷重と考える。なお、ここでは、補強前の既設トンネルは健全な状態(設計 時に想定した応力状態)であるものとする。表 3.1.1-1 に充填材加圧注入時・充填材硬化 後残存圧力作用時の安全性に対する検討方法を示す。

図 3.1.1-1 主要施工手順

	表	3.1.1-1充填材加圧注入時・補強完了時の取扱い	
検討時期	1. 充填材加圧注入時(着目リングのみ)	2. 充填材硬化後残存圧力作用時(着目リングのみ)	3. 充填材硬化後残存圧力作用時(隣接いが含む)
作用荷重	加圧注入時圧力(上越量含む)	充填材硬化時残存圧力	充填材硬化時残存圧力
荷重の取扱	一時的な荷重	常時荷重	常時荷重
検討部位	 加圧注入せが メンドリング 内の答部応力 加圧注入せが メンドリング と隣接するセグ メンドリング 間のリング 間 継手 セグ メンド リング 間線手 セグ メンド リング 間線手 	 ・補強区間端部のセゲ メントリング の各部応力 ・開接するセゲ メントリング 間のリング 間継手 ・ レング 間線 ・ リング 間線手 ・ レング 間線手 	 ・隣接したもグメシトリングの加圧注入・硬化が完了した時点での中央部セグメントリングの各部応力 中央もグジントリング 中央もグジントリング 隣接袖塗りング 中央補強リング
	補強対象区間 リング 開墾手 圧力 加圧注入部 隣後やグ メント 調接をグ メント 隣後やグ メント	補強対象区間 補強非対象区間 圧力 リッが間継手 補強対象区間端部での圧力	補強対象区間 圧力 圧力 原設いない 既設いない 隣接セゲ ぶいト 中央 ・ サウ・デント 」 隣接セゲ ぶいト
断面力の算定	1. 既設1>44 ・設計荷重による断面カ+加圧注入時圧力による断面カ 2. 補強リング ・加圧注入時圧力による断面力	 既設や44 設計荷重による断面力+充填材硬化時残存圧力による断 面力 2.補強リング 充填材硬化時残存圧力による断面力 	同左
算定応力 の取扱い	 1. 既設レシネル ・設計荷重の応力と、設計荷重+加圧注入時圧力の応力差 に着目する。 2. 補強ソンゲ ・加圧注入時圧力の応力に着目する。 	1. 既設1/34 ・設計荷重の応力と、設計荷重+充填材硬化時残存圧力の 応力差に着目する。 2. 補強リング ・充填材硬化時残存圧力の応力に着目する。	同左
応力度の 上限値	・一時的な荷重を考慮して、許容応力度の50%の割増しを 考える。 ・既設トンネルの各部の応力は、設計時で許容応力度の85%と 仮定して、上記着目応力が許容できる応力度の上限値を 許容応力度の85%とする。	・既設トンネルの各部の応力は、設計時で許容応力度の85%と 仮定して、上記着目応力が許容できる応力度の上限値を 許容応力度の15%とする。	同左

 $-53 - \sim -54 -$

3.1.2 追加外荷重作用時の補強効果の確認

補強が必要となる原因としては、既設トンネルが既に何らかの損傷を受けている場合と 将来的な損傷に対する場合が考えられる。既設トンネルが既に何らかの損傷を受けている 場合については、その時点でのセグメントや継手材の応力状態を設定することが難しいこ とから、ここでは、将来的な損傷に対する場合を考えて、補強完了以降に追加外荷重作用 が発生する場合を取り上げる。

追加外荷重としては、近接して高層ビルが建設された場合を想定し、既設トンネル上面 での鉛直土圧が増加する場合と取り上げる。

補強効果の確認においては、追加外荷重に対する既設トンネルと補強リングの断面力の 分担状況によって、補強リングの補強効果について検討する。

表 3.1.2-1 補強効果の確認方法

3.2 既設トンネルと補強リングの構造モデルの設定

3.2.1 既設トンネルの構造モデル

シールドトンネルにおけるセグメントリングの構造形式に基づいて検討する。

セグメントリングの構造では、セグメントの継手部分の剛性がセグメント単体の剛性に 比べて低いことをどのように評価するかが問題となる。文献¹⁾では、セグメントリングの 構造モデルを、セグメント継手の力学的取扱い方の相違によって、以下のように分類して いる。

①セグメントリングを曲げ剛性一様なリングと考える方法

- a. セグメント継手部分の曲げ剛性の低下は考慮せずに、セグメントリングはセグメ ント単体と同一の曲げ剛性EIをもつ、曲げ剛性一様なリングと考える方法
- b. 継手部分の曲げ剛性の低下に伴う変形の増加を、リング全体の曲げ剛性の低下として評価し、セグメントリングをη EI(η≤1:曲げ剛性の有効率)なる曲げ剛性一様なリングと考え、さらに"千鳥組"による継手部の曲げモーメントの配分を考慮して、η EI なる一様な曲げ剛性をもつリングから算定された断面力のうち、曲げモーメント M をく(0≤ζ≤1:曲げモーメントの割増し率)だけ割り増して、(1+ζ) M を主断面の設計用曲げモーメントとする方法
- ②セグメントリングを多ヒンジ系リングと考える方法。
- ③セグメントリングを回転ばねを持つリングと考え、"千鳥組"による添接効果を隣接す るリング間の相対変位に応じてせん断力が発生するせん断ばねで評価する方法

ここで、セグメントの千鳥組とは、図 3.2.1-2 に示すように、隣接するセグメントリン グにおいて、セグメント間継手をずらして配置することである。

図 3.2.1-2 セグメントリングの千鳥組説明図

本技術の成立性の検討にあたっては、セグメント間継手ならびにリング間継手の照査が 重要であることから、既設トンネルのモデル化としては、上記③の方法によるものとする。

図 3.2.1-3 既設 トンネルの構造解析 モデル(設計時)

3.2.2 補強リングの構造モデル

補強リングの継手構造についても、シールドトンネルにおけるセグメントリングの構造 形式に基づいて検討する。

補強リングはトンネル軸方向に離散的に配置することから、隣接する補強リングとの間を セグメントリングにおけるリング間継手のような継手で接続することは考えないものとす る。

したがって、セグメントリングの構造モデルのうち、補強リングに適用可能な構造モデ ルは、以下のようになると考えられる。なお、補強リングを構成する円弧状の部材を補強 リングピースと呼ぶものとする。

- 継手部分の曲げ剛性の低下は考慮せずに、補強リングは補強リングピース単体と同一の曲げ剛性 EI をもつ、曲げ剛性一様なリングと考える方法
- ② 補強リングを多ヒンジ系リングと考える方法。
- ③ 補強リングを継手部に回転ばねを持つリングと考える方法。

表 3.2.2-1 に補強リングの構造モデルと継手構造の比較表を示す。

補強リングを曲げ剛性一様なリングとすることは、継手部の剛性を高めるために連結板 を設置したとしても難しい。補強リングを多ヒンジ系リングとする方法は、その外周部に 既設トンネルが存在することから合理的と考えられるが、ピン構造とするための部材の製 作・組立が煩雑となる。一方、補強リングを回転ばね系リングとすることは、一般的なシ ールドトンネルのセグメントの設計方法に近いと考えられる。そこで、補強リングの継手 をボルト接合による回転ばねと評価するものとする。

 $-59 - \sim -60 -$

3.2.3検討時期毎の既設トンネルおよび補強リングのモデル化

前述の検討時期毎に既設トンネル及び補強リングをモデル化した構造解析モデルを表 3.2.3-1 に、解析モデル模式図一覧表を表 3.2.3-2 に示す。

1) 設計荷重時

既設トンネル(3リング)の解析モデルを用いる。

2) 充填材加圧注入時(着目リングのみ)および充填材硬化後残存圧力作用時(着目リングのみ)

既設トンネル(3リング)と補強リング(1リング)の解析モデルを用いる。

充填材およびゴムチューブはモデル化せず、充填材の加圧注入時にゴムの圧縮応力を 介して作用する荷重を補強リングおよび既設トンネルに作用させて、補強リングおよび 既設トンネルへの加圧力の影響を検討する。

補強リングは法線方向外側への変位を既設トンネルから拘束されるため、補強リング に変位制御ばねを設置する。補強リングに法線方向外側へのばね反力が発生した場合に は、その反力を既設トンネル外側に作用させる。

施工にあたっては、充填材の加圧注入を離散的に行うことから、既設トンネルのリン グ間継手に施工時に発生する断面力に対してリング継手部の照査を行う。

3) 充填材硬化後残存圧力作用時(隣接リング含む)

既設トンネル(3リング)と補強リング(3リング)の解析モデルを用いる。

充填材加圧注入時と同様に補強リングと既設トンネル間に変位制御ばねを設定する。

4) 追加外荷重作用時

既設トンネル(3リング)と補強リング(3リング)の解析モデルを用いる。

補強完了以降に追加外荷重が作用する場合には、充填材およびゴムチューブをモデル化して、追加外荷重による既設トンネル及び補強リングへの影響を検討する。

充填材とゴムチューブのモデル化は、それらを法線方向の棒部材(直列ばね)とする。

3.2節 参考文献

1) トンネルライブラリー第6号「セグメントの設計」平成6年6月土木学会

 $-63 - \sim -64$

 $-65 - \sim -66 -$

3.3 補強技術の成立性の検討条件

3.3.1 既設トンネル仕様の設定

付加荷重(充填材加圧注入圧、充填材硬化後残存圧力ならびに追加外荷重)の影響を考 えるためには、設計荷重による断面力・応力状態をベースにする必要があるため、既設ト ンネルの設計条件を設定した上で、標準的なトンネルの仕様を設定しておく必要がある。

そこで、文献¹⁾を参考に検討対象シールドトンネルの設定を行ったその結果を表3.3.1-1 に示す。

 $-69 - \sim -70 -$
3.3.2 補強リング仕様の設定

補強リングには、ゴムチューブ配置スペースが必要になるものの、鋼製セグメントと類 似した部材構成と考えることができる。そこで、補強リングの仕様を設定するにあたって、 鋼製セグメントの標準仕様を参考にするものとする。補強リングと鋼製セグメントの部材 について下図に示す。

図 3.3.2-1 補強リング と鋼製セグ メントの構造比較

そこで、文献¹⁾を参考に、補強リングの標準仕様の設定を行った。

標準鋼製セグメントのうち、前述の標準コンクリートセグメントの内側に補強リングを 配置することから、標準鋼製セグメントの外径は 5,000mm 以内を目安として、セグメン ト外径 Do=4,800mm、セグメント幅 b=1,000mm、2本主桁、タイプ3、標準番号 S67 を 選択し、これを参考に設定した補強リングの標準仕様を表 3.3.2-1に示す。

補強リングの部材仕様の設定にあたっては、まず、主桁厚さなどを標準鋼製セグメントの参考例によって決定し、0.2MPa 相当の等分布荷重による軸力と、その軸力による応力度の余裕分に相当する曲げモーメントに対して継手部などの仕様設定を行うことを基本とした。

 $-73 - \sim -74 -$

3.3.3荷重

1) 既設トンネルに作用する設計荷重

既設トンネルに作用する荷重としては、充填材注入時荷重や設計荷重以外の追加外荷 重による増分荷重のみを取り上げることも考えられるが、継手の回転ばねが、継手部の 回転角によって変化することから、設計時の荷重を含めて検討を行うものとする。

既設トンネルに作用する設計荷重としては、鉛直土圧、側方土圧、水圧ならびに自重 を考える。荷重については、文献²⁾における「全周ばねモデル」に相当する荷重に準じ るものとする。

設計荷重の設定方法について表 3.3.3-1 に示す。

2) 付加荷重

設計荷重時以降に作用させる付加荷重を表 3.3.3-2 に示す。

充填材の加圧注入圧の形態として、全周加圧(CASE-1)と上下加圧(CASE-2)を取り 上げる。なお、全周加圧においては、底部と頂部の加圧注入圧に充填材比重分の差を設 定する。

また、追加外荷重としては、建物荷重による増加鉛直土圧を考え、CASE-1(全周加圧) と CASE-2(上下加圧)の両方に作用させるものとする。

 $-77 - \sim -78 -$

 $-79 - \sim -80 -$

3.3.4 地盤反力係数

一般的な土層区分による地盤反力係数とし、ここでは k=10MN/m³とする。

3.3.5 継手ばね

既設トンネルのセグメント間継手およびリング間継手は、文献²⁾に従って、それぞれ回転ばねおよびせん断ばねにモデル化する。

1) セグメント間継手

セグメント間継手は回転ばねとしてモデル化するが、回転ばね定数は算定される曲げ モーメント M、軸力 N ならびに継手部の構造によって変化する。鉄道指針では、既設ト ンネルを剛性一様なモデルとして構造計算を行い、得られた平均的な軸力のもとで、曲 げモーメントを変化させた場合の継手部の回転角θを実験もしくは解析的に求めて、回 転ばね定数 km=M/θ として設定される。

既設シールドトンネルの設定で算出した軸力の平均的な値 N=550kN/m を用いて、算 定した M-θ 関係を下図に示す。

図 3.3.5-1 既設トンネルセグメント間継手の M-θ 関係

図 3.3.5-2 補強リングピース間継手の M-θ 関係

2) リング間継手

リング間継手は、梁の変形の理論解によってせん断ばねにモデル化する。ここでは、 平板形の RC セグメントに関するせん断ばね定数の設定について以下に記す。

(1)半径方向

ksr=192EI/(2b)³

ksr:半径方向せん断ばね定数

EI:セグメントのトンネル軸方向の曲げ剛性

b:セグメント幅

図 3.3.5-3 半径方向せん断ばね算定模式図

表 3.3.5-1 半径方向せん断ばね算定結果

セク [*] メント幅 b(mm)	セク [*] メント高 h(mm)	コンクリートの 弾性係数 Ec(N/mm2)	I(mm4/m)	ksr (N/mm/m)	ksr (kN/m/m)
1000	200	33000	666666667	528,000	528,000

(2)接線方向

kst=Lj・h・E/{b(1+v)}
kst:接線方向せん断ばね定数
G:セグメントのせん断弾性係数
E:セグメントの弾性係数
v:セグメントのポアソン比
Lj:軸方向継手間隔
h:セグメント高さ
b:セグメント幅

2、3、3、3~2 按線刀 凹 と 70 別は 40 昇 足 帕 未								
セク [・] メント幅 b(mm)	セク [・] メント高 h(mm)	コンクリートの 弾性係数 Ec(N/mm2)	軸方向継手 間隔Lj(mm)	ホ [°] アソン比 <i>ν</i>	kst (N/mm/m)	kst (kN/m/m)		
1000	200	33000	780	0.17	4,400,000	4,400,000		

表 3.3.5−2 接線方向せん断ばね算定結果

3.3.6充填硬化部材のモデル化

充填硬化部はばね部材にモデル化し、構造解析にあたっては補強リングと既設トンネル の軸心間を結ぶばね部材に設定する。

このときのばね値は次のように設定する。

1/ks = (1/kg + 1/kc)

 $kg = Eg \cdot a/(2 \cdot tg)$

kc=Ec∙a/tc

ここに、

ks:充填硬化部の換算ばね値(N/mm/mm²)

kg:単位面積当りのゴムのばね値(N/mm/mm²)

kc:単位面積当りの充填材のばね値(N/mm/mm²)

Eg:ゴムの弾性係数(N/mm²)

a:単位面積(=1mm²)

tg:ゴム厚(mm)

Ec:充填材の弾性係数(N/mm²)

tc:充填材厚(mm)

我们的问题,我们的问题,我们的问题,我们的问题,我们的问题,我们的问题,我们们				
構成厚t(mm)	35			
ゴム厚tg(mm)	5			
充填材厚tc(mm)	25			
ゴム弾性係数Eg(N/mm2)	2.58			
ゴムのばね定数kg(N/mm/mm2)	0.258			
充填材弾性係数Ec(N/mm2)	22400			
充填材のばね定数kr(N/m/mm2)	896			
ゴムと充填材のばね定数ks(N/mm/mm2)	0.257926			
ゴムと充填材のばね定数ks(kN/m/m2)	257,926			
ゴムチューブ幅(mm)	712			
軸心間の換算ばね定数ks'(kN/m/m)	183,643			

表 3.3.6-1 充填硬化部材のモデル化

3.3節 参考文献

1)「シールド工事用標準セグメントー下水道シールド工事用セグメントー」(土木学会・日本下水道協会 共編)

2) 「鉄道構造物等設計標準・同解説 シールドトンネル」(平成 14 年 12 月 運輸省鉄道 局 監修 鉄道総合技術研究所 編)

図 3.3.6-1 充填硬化部材のモデル化模式図

3.4 解析結果

3.4.1 解析方法と解析モデル

3次元FEM解析には、汎用プログラムである「ABAQUS」を用いる。

既設トンネルのモデル化は、セグメントリングの千鳥組による添接効果を考慮するため に着目するセグメントリングの両側に隣接するセグメントリングをリング間のせん断ばね で連結する3リングモデルとする。なお、両端部のセグメントリングの幅は中央セグメン トリングの1/2とする。したがって、両端部セグメントリングの物性値ならびに荷重につ いても、中央セグメントリングの1/2とする。

補強リングについては、充填材加圧注入時(着目リングのみ)および充填材硬化後残存圧 力作用時(着目リングのみ)においては、隣接するリング間継手への影響を見るために中央 セグメントリング部のみにゴム圧縮応力を介した圧力を作用させ、充填材硬化後残存圧力 作用時(隣接リング含む)および補強完了後の外荷重作用時には中央部ならびに両端部に補 強リングを配置する。補強リングについても、両端部リング幅は中央リング幅の 1/2 とす る。

図 3.4.1-1 既設トンネルのモデル概要図

解析における要素名称とそれに対応する部位ならびに諸物性値を以下に示す。 1) はり要素

セグメント(既設トンネル)および補強リングははり要素にモデル化する。物性値を 次表に示す。なお、表中の値は中央リングに対するものである。

部位	弾性係数 E(kN/m2)	断面積 A(m2)	断面二次 モーメントI(m4)
セグメント(既設トンネル)	33,000,000	0.2	6.67.E-04
補強リング	210,000,000	0.00895	1.76E-05

表 3.4.1-1 はり要素

2) ばね要素

地盤ならびにセグメントリング間の継手については、それぞれ直ばねならびにせん断 ばねにモデル化する。また、既設トンネルと補強リング間については、充填材加圧注入 時および充填材硬化後残存圧力作用時については、変位制御の直ばねをインターフェイ ス要素として設定し、補強完了後の追加外荷重作用時については、充填硬化材を直ばね として設定する。物性値を次表に示す。なお、地盤ばね、既設トンネルと補強リング間 充填硬化材の値は中央リングに対するものである。

部位	ばね定数k(kN/m/m)
地盤ばね	10,000
セグメントリング間半径方向せん断ばね	528,000
セグメントリング間周方向せん断ばね	4,400,000
既設トンネルと補強リング間変位制御ばね	引張:0、圧縮:∞
既設トンネルと補強リング間充填硬化材	183,643

表 3.4.1-2 ばね要素

回転ばね要素

既設トンネルのセグメント間継手ならびに補強リングのピース間継手は、回転ばねに モデル化する。物性値については、「3.3.5 継手ばね 1)セグメント間継手」参照。 表 3.4.1-3 に解析モデルを示す。

 $-87 - \sim -88 -$

3.4.2 解析結果

表 3.4.2-1 に CAE-1(全周加圧)および CAE-2(上下加圧)の断面カー覧表を、表 3.4.2-2、 表 3.4.2-3 に CAE-1 (全周加圧)、CAE-2 (上下加圧)の変位ならびに断面力図を示す。 また、表 3.4.2-4 に軸圧縮力と曲げモーメントの検討時期毎の推移を、表 3.4.2-5 に既設 トンネルの内空寸法の推移に示す。

1) 既設トンネルの断面力

軸圧縮力は、CAE-1(全周加圧)、CAE-2(上下加圧)ともに充填材を加圧注入するこ とによって減少するが、充填材硬化後残存圧力作用時(着目リングのみ)よりも充填材硬 化後残存圧力作用時(隣接リング含む)においてさらに軸圧縮力が減少している。これは、 隣接するリングに加圧注入を行った効果が、リング間継手を介して中央リングに表れた ものと考えられる。CAE-2(上下加圧)については、設計荷重時の内側引張曲げモーメ ントを低減するために部分的に充填材を加圧注入したものであるが、加圧注入を行わな い範囲も既設トンネルと接しているため、充填材の加圧注入によって軸圧縮力が減少す るものと考えられる。軸圧縮力の減少量は CAE-1(全周加圧)よりも CAE-2(上下加圧) の方が、最終的に 50kN 程度少なくなっている。これは CAE-1(全周加圧)と CAE-2 (上下加圧)の加圧注入力の差に起因すると考えられる。

曲げモーメントについては、CAE-1(全周加圧)、CAE-2(上下加圧)ともに充填材硬 化後残存圧力作用時(隣接リング含む)まではほとんど変化がなく、追加外荷重作用時に 同様に増加している。CAE-2(上下加圧)は常時の最大曲げモーメントの低減を意図し た充填材加圧注入方法であるが、充填材加圧注入時に若干その効果が見られるもののそ の後は効果が見られない。

2) 補強リングの断面力

軸圧縮力は、充填材加圧注入時を除いて CAE-2(上下加圧)が CAE-1(全周加圧)よ りも 50kN 程度小さくなっている。なお、既設トンネルで見られたような、充填材硬化 後残存圧力作用時(着目リングのみ)よりも充填材硬化後残存圧力作用時(隣接リング含 む)においてさらに軸圧縮力が減少する結果とはなっていない。

曲げモーメントについては、CAE-2(上下加圧)が CAE-1(全周加圧)の2倍程度と なっている。これは CAE-2(上下加圧)の加圧注入方法が曲げモーメントの発生を促す ことによるものと考えられる。

3) 既設トンネルの内空寸法

CAE-2(上下加圧)において顕著であるが、充填材を加圧注入することによって既設 トンネルが外側へ変位し、内空寸法が変化していることがわかる。CAE-2(上下加圧) では上下方向に 1mm 程度広がり、CAE-1(全周加圧)では横方向には 0.5mm 程度広が るものの上下方向には 0.4mm 程度狭くなる状況である。

		1	CASE-1(全周加圧)					CASE-2 (上下加圧)					
		検討ステップ		設計時	充填材 加圧注入時 (着目リングのみ)	 充填材硬化後 残存圧力作用時 (着目リングのみ) 	土 ・ ・ 充填材硬化後 残存圧力作用時 (隣接リング含む) ・	追加外荷重 作用時	設計時	充填材 加圧注入時 (着目リングのみ)	 充填材硬化後 残存圧力作用時 (着目リングのみ) 	→ 充填材硬化後 残存圧力作用時 (隣接リング含む)	追加外荷重 作用時
		軸圧線力	角度(゜)	21	21	21	21	21	21	21	21	21	21
		11111111111111111111111111111111111111	M(kN·m)	58.7	60, 9	60, 8	62.9	84. 6	58.7	56, 0	57.3	55, 9	77.8
		取小	N(kN)	-551	-232	-310	-195	-347	-551	-203	-340	-246	-397
			角度(°)	146	1/6	1/6	146	146	111	111	111	111	107
		軸圧縮力		07.4	07.4	0140	24.6	21.0	24.0	24.0	24.0	22 E	66 1
		最大	M (KN•III)	27.4	23.4	Z3. 4	24.0	31.0	-34.9	-34.0	=34. Z	-33. 5	-00.1
	-		N(KN)	-849	-521	-599	-496	-687	-845	-495	-632	-535	-//9
	ゼガ	曲げモーかん	角度(゜)	180	180	180	180	180	180	180	180	180	180
	×	最大	M(kN∙m)	62.9	63.7	63.7	64. 6	99.5	62.9	61.5	63. 6	64. 1	99.2
	5		N(kN)	-818	-488	-566	-465	-605	-818	-461	-597	-507	-647
	۱. ۲		角度(°)	64	64	64	64	64	64	64	90	90	94
	· ·	曲げモーメント	M(kN·m)	-60.3	-62.4	-62.3	-64.1	-82.8	-60.3	-57.8	-60.0	-61.6	-83.3
既			N (kN)	-738	-420	-497	-389	-617	-738	-391	-590	-496	-758
設		++ / NC +>	岳庄(°)	20	420		20	20	20	24	20	-100	20
1		モん断力	円度() 0.(LN)	35	39	39	35	100.0	39	34	J9	35	39
12		取入	S(KN)	91.5	95.6	95.5	99.1	138.8	91.5	/6.8	82.5	/4. /	114.9
1		せん断力	角度(゜)	321	321	321	321	321	321	309	321	321	321
1		最小	S(kN)	-78.7	-82.0	-81.8	-84. 8	-117.6	-78.7	-66.9	-70.0	-62.8	-96.0
	セ		角度(°)	9	9	9	9	9	9	9	9	9	9
	グ	曲げモーメント	M(kN·m)	56.4	57.6	57.5	58.6	70.1	56.4	54. 2	54. 9	53.3	65.1
	×	最大	N (kN)	-578	-263	-340	-228	-406	-578	-501	-303	-293	-312
	2		S(kN)	11.8	12.3	11.9	12.1	16.1	11.8	4.0	4.0	3.7	4.7
	<u>۲</u>	曲げモーメント 最小	角度(゜)	77	77	77	77	77	77	77	77	77	77
	間		M(kN∙m)	-50.8	-51.3	-51.4	-51.9	-56.4	-50.8	-50.8	-51.0	-51.1	-55.7
	継エ		N(kN)	-743	-419	-497	-387	-593	-743	-519	-322	-311	-337
	+	A. rbr	S(kN)	13.5	16. /	15.6	17.6	37.6	13.5	-0.4	-6.6	-5.9	-9.1
	and U	月度		//	11	//	11	//	//	//	//	//	11
	継シ	最大 せん断力 (kN/m)	<u> 千住</u> / 回 田士白	-113	-155	-149	-134	-222	-113	-150	-140	-118	-207
	ナグ		<u>同</u> 万円 合世	-1.3	-2.9	-2.0	-1.3	-2.7	-1.3	-Z. 3	-5.0	-1.0	-Z. 3
	<u> </u>	(614/111/	白风	113	136	149	134		13	130	140	110	207
		軸圧縮力	月及() M(kNim)	_	1.4	1.4	0	11.7	_	11.4	11 5	10.4	10.0
		最小		_	_1.4		<u> </u>	_256	_	-500		-202	
			角度(°)	_	180	180	180	180	_	180	180	180	180
		軸圧縮力	M(kN·m)	_	4 8	4 7	4 9	11.0	_	0.2	0.0	0.1	6.3
	U.	最大	N(kN)	-	-490	-382	-370	-390	-	-539	-341	-330	-350
	Ś		角度(°)	-	180	180	180	180	-	0	0	000	0
	グ	田けモメント	M(kN·m)	-	4.8	4.7	4.9	11.0	-	11.4	11.5	10.4	19. 9
	Ľ	東 大	N (kN)	-	-490	-382	-370	-390	-	-500	-303	-293	-311
4.4		alle i l'ar de l	角度(°)	-	116	116	116	116	-	51	51	51	51
佣	ス	田けモーメント	M(kN·m)	-	-4.2	-3.8	-3.7	-10.1	-	-14.7	-12.5	-11.5	-15.4
知		取小	N (kN)	-	-485	-376	-364	-379	-	-518	-319	-308	-333
12		せん断力	角度(゜)	-	103	214	214	219	-	304	43	43	43
ガ		最大	S(kN)	-	5.4	5.1	5.0	9.5	-	25.0	18.2	17.3	23.8
Ĺ		せん断力	角度(゜)	-	257	146	146	141	-	56	317	317	317
1	L	最小	S(kN)	-	-5.4	-5.1	-5.0	-9.6	_	-25.1	-18.1	-17.3	-23.1
1			角度(゜)	-	9	9	9	9	_	9	9	9	9
1	Ľ	曲げモメント	M(kN·m)	-	1.4	1.3	2.2	11.6	_	10.6	10.6	9.5	19.1
1		取大	N (KN)	-	-458.6	-350.1	-337.6	-356.2	_	-500.8	-303.3	-292.9	-311.5
1			S(KN)	-	-0.2	0.2	0.2	1.2	_	4.0	4.0	3. /	4. /
1	间総	thuist is i	円度(⁻)	-	77							77	77
1	松手	出けモーメント	M(KN·m)	-	-0. /	-0.4	-1.5	-10.4		1.3	-0.3	-0.4	-9.4
1	+	取 小	N (KN)	-	-4/3.0	-364.4	-352. 6	-3/8.7		-518.6	-321.5	-310.6	-336. /
1	1	1	S (KIV)	_	- 0	. () h	0	-2.9		-04	—h h	-5 9	-9

 $-91 - \sim -92 -$

表3.4.2-1断面力一覧表

 Image: Contract of the second se

		表3.4.2-2(1) 断面力図 GASE 曲げモーメント (kN・m/m)	-1(全周加圧) 設計何重作用時 軸力(kN/m)	せん断力 (kN/m)
既設12秒 (中央)	Clear bit here is still Group Tas Tenness	Ciper In: The J to 11 Ciper In: The Ciper In: Ciper	Additional and a second and as second and a	Cherch Res Live 11 Cherch Res Li
既設わネル (隣接)	Clear the The Terrate	Chees for they 2 or 11 Grane free here 141 (21) theyer	Chard her Her 2. he 11 Galaxy Basel With Jong Frees	Cheed Inc See 1 Inc 11 Cheed Inc 11 Cheed Inc 11 Cheed Inc 11 Cheed Inc 11
補強いが (中央)				
補強リング (隣接)				

 $-93 - \sim -94 -$

	変形 (m)		表3.4.2-2(2) 町面刀図 GASE-I(全周加 曲げモーメント (kN・m/m)		<u>加圧) 充填材加圧注入時(着目)ングのみ)</u> 軸力(kN/m)		せん断力 (kN/m)	
既設わ神 (中央)	Claud for hose 4 to 11 Gener Tear Transmission	6.0011 6.001 6.0007 6.0007 6.0007 6.0007 6.00000 6.00000 6.00000 6.00000000	And fac line 4 ha 11 State has held line have	81.2 11.0 2.0 2.0 2.0 10 10 10 10 10 10 10 10 10 10 10 10 10	New fee Bag & Bag I	4004 4001 4001 4010 4010 4010 4010 4010	Objection that is the 1 Character than intell (20) there for	80 80 70 70 70 70 80 70 80 70 80 70 80 80 80 80 80 80 80 80 80 80 80 80 80
既設われ (隣接)	Chert for New A los 1	6.0010 6.0014 6.0024 6.0027 6.0028 6.0027 6.0028 6.014 6.014 6.014 6.014 6.014 6.014 6.014 6.014 6.014 6.014 6.014 6.014 6.014 6.014 6.014 6.014 6.000	Const for the state of the stat	14 14 47 77 34 34 34 34 34 34 34 34 34 34 34 34 44 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 3	Cherd from These Idea of The	4012 4872 4883 4884 4884 4884 4884 4884 4884 488	Claud for the 4 for 11 Gener Ream Half for them Fi	52.55 42.56 30.00 30.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00
補強リング (中央)	Character Hag & Kurt Generative Hage & Kurt Generative Hage Annual	6.002 0.0004 0.0004 0.0004 0.0004 0.0005 0000500000000	Class for the 5 to 11 Grant from 1691 Birt Monor	4.7% 8.4% 2.4% 2.4% 2.4% 4.4% 4.4% 4.4%	Chercher Hays & Hays 1 Genetic Hays & Hays 1 Genetic Haven MPT Anal Proce	4831 4813 483 483 475 475 475 475 475 485 4 475 485 4	Claud fair the 4 to 11 Galace from HHT Sol there Fo	1419 4308 1200 2300 4100 4100 4100 4100 4100 4100 4100 4
補強リング (隣接)	▶ 標語の販売力(47) 5m 円 - 1							

 $-95 - \sim -96 -$

	变形 (m)	表3:4:2=2(3)断面方図 GNSE=1(全周加圧) 曲げモーメント (kN・m/m)	<u>元頃材便化後残存圧力TF用時(着日)が(のみ)</u> 軸力(kN/m)	せん断力 (kN/m)
既設わ桃 (中央)	Signat the New S. No. 11 Grower The Therease.	Conce there has here! Channel there has here!	Cine the Bays is to 17 Cine the Cine the	All the first firs
既設わ神 (隣接)	Cipat for the 3. So 11 Grant for the 3. So 11 Grant for the formation	Caned for Days & Ins 11 Caned	Cherter have the Y have from different	Class for the 1 to 1 Grade from to 10 2 theor for the set of the 1 Grade from to 10 2 theor for
補強リング (中央)	Signed for here 5, no 11 Genere The Theorem	All All All All All All All All All All	Checker here hill have fires	6.85 4.86 4.86 4.86 4.86 4.86 4.86 4.86 4.86
補強りング" (隣接)	* 國籍の断南力は0.5m当たり			

 $-97 - \sim -98 -$

 $-99 - \sim -100 -$

 $-101 - \sim -102 -$

		表3.4.2-3(1) 町面刀図 GAS 曲げモーメント (kN・m/m)	E-2(上下加圧)設計何重作用時 軸力(kN/m)	せん断力 (kN/m)
既設わ神 (中央)	Cheve Test Tenning	Clipted from helf / Del Manuer	Over that the 1 ber Gener from heft f data	Cheve there 3 the 11 Cheve there 1 the 1 the 1 the 1 Cheve there 1 the 1
既設われ (隣接)	Open for the 1 to 1 t	Ober for her 147 for Manuer	Chester law 1 hot from the first fro	Coper Size 2 Au 11 Coper
補強リング (中央)				
補強リング (隣接)				

 $-103 - \sim -104 -$

	変形 (m)	<u>表3.4.2-3(2)</u> 断面力図 CASE-2(上下加 曲げモーメント (kN・m/m))圧) 充填材加圧注入時(著目)シケのみ) 軸力(kN/m)	せん断力 (kN/m)
既設 い 林 (中央)	Gape Set Sites A for 17 Gapes True Transmon	Cuper Section of 11 Strikement	And	And bet they 4 ho 11 Desire Security 120 they for (2.2)
既設や神 (隣接)	days to the days to the second	Capet for the set of t	Approx Them 1997 Asia From	Čapa Bel Bag & Ars 11 Deser Share (1) Did Shee fr
補強リング (中央)	6,000 6,000 8,000 8,000 9,000 9,000 9,000 8,0000 9,000 8,0000 9,000 8,0000 9,000 8,0000 9,000 8,0000 9,000 8,0000 9,0000 9,0000 9,0000 9,000 9,000 9,000 9,0000 9,0000 9,000	Öder for 1991 [21] Manual 11.47 Öder for 1991 [21] Manual 41.51	Cherriter that A to 11 Cherriter that A to 11	Chart for the strip of the strip Chart for the strip of the strip
補強いが (開設)	◆題線の影響力け0.5m当たU			

 $-105 - \sim -106 -$

		表3.4.2-3(3)断面力図 CASE-2(上下加圧) 曲げモーメント (kN・m/m)	_ 充填材硬化後残存圧力作用時(着目リングのみ) 抽力 (kN/m) せん いかつ (kN/m)		
-	<u>実</u> 形 (m)		₩7J (KW/Ⅲ)	での町7J(Km/m)	
既設!2礼 (中央)	Canadra Transformation Canadra Transformation	Caper Inter 6211 [211 Manual	August for the state of the sta	And the last of th	
既設われ (隣接)	Character Line (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	dee the time 6 ho 11 the second seco	Approx the the the time of the	Charles They I for 1 Charles They I for 1	
補強リング (中央)	Capacities Say 8, iso 11 Capacities The Theorem	Control of the second of the s	describe the 1 had from	Output Back Set 100 B	
補強リング (隣接)	+ 勝勝の勝勝中(405				

 $-107 - \sim -108 -$

	表3.4.2-3(4) 断面力図 CASE-2(上下加圧) 充填材硬化後残存圧力作用時(隣接少が含む)				
<u> </u>	变形 (m)	曲げモーメント (kN・m/m)	軸力 (kN/m)	せん断力 (kN/m)	
既設わね (中央)	deve bet the tit as if it deve	Chard Set: They St. Set: 11 Chard Set: They St. Set: 11 Chards Set:	deprive the 13-M Prov	And the State of Carl Base of C	
既設や补 (隣接)	Charles the fit with the fit wi	All and a second	All Y All Y Al	data factors filling filling 45 data factors filling filling 45	
補強リング (中央)	days tes 56 he 11 General Transmission Contraction Con	Capertiel Say 31 Au 11 Control Deen self for Manuel 1228	And the the state of the state	Caper Set, they Sty Tor 11 Caper Set, Sty Tor 12 Caper Se	
補強リング (隣接)	Canadian State 11	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	And the Sing H	Appendix Stars 11 Comparison of the Stars 12 Comparison	

 $-109 - \sim -110 -$

	変形(m)	表3.4.2-3(5)断面力図 CASE-2 曲げモーメント (kN・m/m)	?(上下加圧) 追加外荷重作用時 軸力 (kN/m)	せん断力 (kN/m)
既設12秒 (中央)	days for the 11 set 11 Grane Transform	Arrow and a second seco	And the set of the set	Canad Bree Hare 17 Inc 17
既設わ神 (隣接)	days law the	develop the tit he tit develop the tit he tit he tit develop the tit he tit he tit develop the tit he tit he tit he tit he tit develop the tit he	Óper finit hen 11 hen 11 11 Öper finit hen 11 hen 11 412 Öper finit hen 11 hen 11 412 Öper finit hen 11 hen 11 412	And the set of the set
補強リング (中央)	deve bet the 11 be 11 0.0044 deve bet the 11 be 11 0.0064	Coperation that the third	Čavet ted They 11 in 11 Calender Beam of 11 Angel Faces	days bit like 11 he 11 Control from offel Del blace Pro
補強リング (隣接)	dever the there it has it it down the there it is a state it down the there is a state it down the the there is a state it down the there is a state it down the the there is a state it down the the there is a state it down the there is a state it down the there is a state it down the	Capacitate there if it has the second	Ödere Best off Ang Pore 100 0 Ödere Best off Ang Pore 100 0	Čávať ter. Skol 10 / 10 / 10 / 10 / 10 / 10 / 10 / 10

 $-111 - \sim -112 -$

 $-113 - \sim -114 -$

 $-115 - \sim -116 -$

3.5 充填材加圧注入時
 ・充填材硬化後残存圧力作用時の安全性の検討

3.5.1 各部応力照查方法

既設トンネルおよび補強リングの主要各部の応力照査方法を以下に示す。

- 1) 既設トンネル
 - (1) 曲げモーメントと軸力に対するコンクリートおよび鉄筋応力度の照査

断面の応力状態が全断面圧縮状態になる場合と曲げ引張応力が生じる場合に分けて 応力度の算定を行う。このときの判定には以下の諸数を用いる。

 $Ki=Ii/{Ai\cdot(h-u)}$

f=u-(h/2-e)

 $Ai=B\cdot h+n\cdot (As+As')$

 $u = \{1/2 \cdot B \cdot h^2 + n \cdot (As \cdot d + As' \cdot d')\}$

 $II = B \cdot \{u^3 + (h-u)^3\}/3 + n \cdot \{As \cdot (d-u)^2 + As' \cdot (u-d')^2\}$

e=M/N

ここに、

- Ki:換算等値断面の軸力に近い側のコア距離(mm)
- f:換算等値断面の図心から軸力の作用位置までの距離(mm)
- **h**: セグメント厚さ(mm)
- u:軸力側の縁端から換算等値断面の図心までの距離(mm)
- e:断面の図心から軸力の重心位置までの距離(mm)
- Ai: 換算等值断面積(mm²)
- B:セグメント幅(mm)
- As: 引張鉄筋の断面積(mm²)
- As': 圧縮鉄筋の断面積(mm²)
- n: 弾性係数比
- d: 引張鉄筋の有効高さ(mm)
- d': 圧縮鉄筋の有効高さ(mm)
- li:換算等値断面の断面二次モーメント(mm⁴)
- M:曲げモーメント(N·mm)
- N:軸力(N)
 - (a) 主断面が全断面圧縮状態となる場合の照査(Ki≥f)
 - $\sigma_c = N/Ai + M/Ii \cdot u \leq \sigma_{ca}$

```
\sigma_{c'} = N/Ai + M/Ii \cdot (h-u) \leq \sigma_{ca}
```

- ここに、
- **σ**ca: コンクリートの許容曲げ圧縮応力度(N/mm²)
- oc: コンクリートの最大圧縮応力度(N/mm²)
- oc': コンクリートの最小圧縮応力度(N/mm²)
- (b) 主断面に曲げ引張応力度が生じる場合の設計(Ki<f)
 - $x^{3}-3 \cdot (h/2-e)x^{2}+6 \cdot n/B \cdot \{As \cdot (e+C)+As' \cdot (e-C')\}x$

```
-6 \cdot n/B \cdot \{As \cdot (e+C)(C+h/2) + As' \cdot (e-C')(h/2-C')\} = 0
```

 $\sigma c = M/\{B \cdot x/2 \cdot (h/2 \cdot x/3) + (n \cdot As'/x) \cdot C' \cdot (C' - h/2 + x) + (n \cdot As/x) \cdot C \cdot (C + h/2 - x)\} \le \sigma ca$

 $\sigma s = n \cdot \sigma c/x \cdot (C + h/2 - x) \leq \sigma sa$

 $\sigma s' = n \cdot \sigma c/x \cdot (C' - h/2 + x) \leq \sigma sa$

ここに、

x: 圧縮縁から中立軸までの距離(mm)

C:セグメント厚さの中心から引張鉄筋までの距離(mm)

C': セグメント厚さの中心から圧縮鉄筋までの距離(mm)

σsa:鉄筋の許容引張応力度(N/mm²)

σs:鉄筋の引張応力度(N/mm²)

σs':鉄筋の圧縮応力度(N/mm²)

(2) セグメント継手部のボルト応力度の照査

断面の応力状態が全断面圧縮状態になる場合と曲げ引張応力が生じる場合に分けて 応力度の算定を行う。このときの判定には以下の諸数を用いる。

d: ボルト位置の有効高さ(mm)

B:セグメント幅(mm)

- (3) リング継手部のボルトの応力度の照査 τ =Q・Lj/AB ここに、 τ : ボルトのせん断応力度(N/mm²) Q:設計用せん断力(N) Q=√(Qr²+Q_θ²) Qr:半径方向せん断力(N) Q_θ:周方向せん断力(N) Lj:軸方向継手間隔(m) AB: ボルトの軸断面積(mm²)
- (4) 補強リングの主桁の応力度の照査

主桁は、軸力と曲げモーメントとを受ける真直はりとして応力度を計算する。

- $\sigma o = N/A + M/Z o$ $\sigma i = N/A M/Z i$
- ここに、
- σ0:外縁応力度(N/mm²)
- **σi**:内縁応力度(N/mm²)
- N : 軸力(N)
- M :曲げモーメント(N・mm)
- A : 主桁の有効断面積(mm²)
- Zo: 外縁側断面係数(mm³)
- Zi: 内縁側断面係数(mm³)

主桁の許容座屈応力度 ocr は鋼製セグメントの局部座屈に対する許容応力度の算定 式によって求める。鋼材の材質 SM490A の場合、以下のようになる。

h/(tr・f・Kr) ≦11.2の場合 σcr=215N/mm²

11.2<h/(tr・f・Kr)≦16の場合

 $\sigma cr = 27200 \cdot \{(tr \cdot f \cdot Kr)/h\}^2 N/mm^2$

f =0.65φ²+0.13φ+1.0 φ= (σ1-σ2) /σ1 (σ2≦σ1 : 圧縮を正とする)

 $Kr = \sqrt{\{2.33/(Lr/h)^2 + 1.0\}}$

ここに、

h: 主桁の高さ(mm)

- tr: 主桁の板厚(mm)
- Lr: 主桁の座屈長さ(mm)(補剛材の純間隔)
- f:応力勾配による補正値
- φ:応力勾配
- Kr:座屈係数の比
- σ1,σ2: 主桁の縁応力度(N/mm²)

- (5) 補強リングの継手のボルト応力度の照査
 - (a) ボルトの引張力に対する照査
 - 内側引張の場合
 - $\sigma_B = (M N \cdot y_0) / (n \cdot e \cdot A_B)$
 - 外側引張の場合
 - $\sigma_B = (M \cdot N \cdot y_i)/(n \cdot e1 \cdot A_B)$
 - ここに、
 - **σ**B:ボルトの引張応力度(N/mm²)
 - M:曲げモーメント(N·mm)
 - N:軸力(N)
 - y₀:主桁外縁から図心までの距離(mm)
 - yi: 主桁内縁から図心までの距離(mm)
 - e:主桁外縁からボルト位置までの距離(mm)
 - e1: 主桁内縁からボルト位置までの距離(mm)
 - n:補強リング継手のボルト本数(本)

AB:ボルトの有効断面積(mm²)

- (b) ボルトのせん断力に対する照査
 - τ B=Q/(n·AB0)
 - ここに、
 - τ B:ボルトのせん断応力度(N/mm²)
 - Q:せん断力(N)
 - n:補強リング継手のボルト本数(本)
 - ABo:ボルトの軸断面積(mm²)

e

С

3.5.2 各部応力照査結果

充填材硬化後残存圧力作用時までの既設トンネルおよび補強リングの主要各部の応力照 査結果をそれぞれ表 3.5.2-1 および表 3.5.2-2 に示す。

1) 既設トンネルの応力照査結果

既設トンネルについては、それぞれの検討ステップでの応力を算出後、設計荷重作用 時からの増分応力を示している。これに対する増分応力許容値は、設計荷重作用時の応 力状態を許容応力度の85%と設定して、常時荷重扱い時には許容応力度の15%、一時的 な荷重取扱い時には許容応力度の65%としている。また、増分応力に対する許容応力度 の比率を表記しているが、これは充填材の加圧設定値(常時相当で200kN/m²)に対して どの程度の比率まで加圧が可能かを表わす指標(以下、加圧可能率と呼ぶ)になると考 えられる。

補強リングを離散的に配置して充填材を加圧注入することから、リング間継手が応力 的に厳しくなることが予想されたが、果たして充填材硬化後残存圧力作用時(着目リング のみ)において、CAE-1(全周加圧)、CAE-2(上下加圧)ともに増分応力が増分応力許 容値を上回っており、加圧可能率はCAE-1(全周加圧)で46%、CAE-2(上下加圧)で 61%となっている。また、隣接セグメントに充填材を加圧注入する充填材硬化後残存圧 力作用時(隣接リング含む)においては、リング間継手の応力が緩和されている。このと きのリング間継手部の状況を図3.5.2-1に示す。

充填材硬化後残存圧力作用時(隣接リング含む)

充填材硬化後 残存圧力作用時 (隣接リング)含む) 常時荷重

注) 位置(角度)は天端から時計回りの角度を示す。 常時の増分応力項の()内数値は常時応力値を示す。 常時の増分応力の許容値項の()内数値は常時の許容応力度を示す。 黄色の網掛け都は増分応力が増分応力の許容値を超過していることを示す。 橙色の網掛け都は比率が最小の項を示す。 一時的な荷重時の許容応力

許容応力度σa

一時的な荷重時の許容応力度=1.5×σa

_

許容応力度σa

(全周)

着目

充填材硬化後 残存圧力作用6

<u>ロリクのみ</u> 常時荷重

充填材 加圧注入時

<u>§目リングのみ</u> −時的な荷重

<u>表3.5.2-1(1) 既設トンネルの応力照査結果[CASE-1(全周加圧)</u> 検討ケ-ス 【 CASE-1(全周加圧)

設計時

常時荷重

58.

検討ステップ

荷重の取扱い (角度)

張正

位置

<u>表3.5.2-1(2)</u> 既設トンネルの応力照査結果[CASE-2(上下加圧) 検討ケース CASE--

設計時

検討ステップ

充填材 加圧注入時

充填材硬化後 残存圧力作用時

| 着|

表3.5.2-2 補強リングの応力照査結果										
検討ケース			CASE-1 (全周加圧)			CASE-2(上下加圧)				
検討ステップ			設計時	充填材 加圧注入時 (美日いかのみ)	充填材硬化後 残存圧力作用時 (着日いかのみ)	充填材硬化後 残存圧力作用時 (隣接いか。含む)	設計時	充填材 加圧注入時 (着日いかのみ)	充填材硬化後 残存圧力作用時 (盖日いがのみ)	充填材硬化後 残存圧力作用時 (隣接いが 含む)
		位置(角度)	- 1	0	0	0	- 1	0	0	0
		M(kN·m:内引張正)		14	14	2.2	-	11 4	11.5	10 4
		N(kN:圧縮正)	-	-458	-350	-337	-	-500	-303	-293
	軸圧縮力 最小	外縁応力度σo(N/mm2:引張正)	-	-56	-44	-46	-	-98	-77	-71
		内縁応力度σi(N/mm2:引張正)	-	-43	-31	-24	-	15	37	31
		許容局部座屈応力度σsca(N/mm2)	-	-323	-215	-215	-	-323	-215	-215
		許容引張応力度σsta(N/mm2)	-	323	215	215	-	323	215	215
		応力を許容値以内とする ための充填材加圧注入圧の比率(加圧可能率)	-	5. 73	4. 87	4. 69	-	3. 27	2.80	3. 01
		位置(角度)	-	180	180	180	-	180	180	180
		M(kN·m:内引張正)	-	4.8	4.7	4.9	-	0.2	0.0	0.1
	軸圧縮力	N(kN:圧縮正)	-	-490	-382	-370	-	-539	-341	-330
		外縁応力度σo(N/mm2:引張正)	-	-73	-60	-59	—	-61	-38	-37
		内縁応力度σi(N/mm2:引張正)	-	-25	-14	-11	-	-59	-38	-36
	取入	許容局部座屈応力度σsca(N/mm2)	-	-323	-215	-215	-	-323	-215	-215
t° −⊼		許容引張応力度σsta(N/mm2)	-	323	215	215	-	323	215	215
		応力を許容値以内とする ための充填材加圧注入圧の比率(加圧可能率)	-	4. 45	3. 57	3. 62	-	5. 30	5.63	5. 78
	内側引張 最大	位置(角度)	-	180	180	180	-	0	0	0
		M(kN·m:内引張正)	-	4.8	4.7	4.9	-	11.4	11.5	10.4
		N(kN:圧縮正)	-	-490	-382	-370	-	-500	-303	-293
		外縁応力度σo(N/mm2:引張正)	—	-73	-60	-59	-	-98	-77	-71
		内縁応力度σi(N/mm2:引張正)	-	-25	-14	-11	-	15	37	31
		許容局部座屈応力度σsca(N/mm2)	-	-323	-215	-215	-	-323	-215	-215
		許容引張応力度σsta(N/mm2)	-	323	215	215	-	323	215	215
		応力を許容値以内とする ための充填材加圧注入圧の比率(加圧可能率)	-	4. 45	3. 57	3.62	-	3. 27	2. 80	3. 01
	外側引張 最大	位置(角度)	-	116	116	116	-	51	51	51
		M(kN·m:内引張正)	-	-4.2	-3.8	-3.7	-	-14.7	-12.5	-11.5
		N(kN:圧縮正)	-	-485	-376	-364	-	-518	-319	-308
		外縁応力度σo(N/mm2:51張正)	-	-38	-28	-2/	-	-3	11	9
		<u> 内縁応力度σι(N/mm2:51張正)</u>	-	-80	-65	-64	-	-149	-113	-106
		許容局部座屈応力度σsca(N/mm2)	-	-323	-215	-215	-	-323	-215	-215
		計谷51張応力度でsta(N/mm2)	-	323	215	215	_	323	215	215
		応力を許容値以内とする ための充填材加圧注入圧の比率(加圧可能率)	-	4. 02	3. 29	3. 38	-	2. 16	1.90	2. 03
ピース 継手		位置(角度)	-	9	9	9	-	9	9	9
		M(KN·m:内引張正)		1.4	1.3	2.2		10.6	10.6	9.5
		N(kN:)上縮正)	-	-458.6	-350.1	-337.6	-	-501	-303	-293
		S (KN)	-	-0.2	0.2	0.2	-	4.0	4.0	3.7
	内側引張	<u>ホルトの引張応力度σB(N/mm2:引張正)</u>		*	₩₩₩が圧縮のため省	à	-	*	ルト部が 上縮のため省略	<u>`</u>
	最大	<u> ホルトのせん断応力度 rB(N/mm2:引張正)</u>	-	0.3	0.2	0.3	-	6.5	6.5	6.1
		<u> ホルトの許容引張応力度 σ Ba (N/mm2)</u>	-	5/0	380	380	-	570	380	380
		<u>ホルトのせん断応力度でBa(N/mm2)</u>	-	405	270	2/0	-	405	2/0	270
		応力を許容値以内とする ための充填材加圧注入圧の比率(加圧可能率)	-	1539.00	1112.80	843. 40	-	62. 21	41.40	44. 40

注) 位置(角度)は天端から時計回りの角度を示す。

セグメントならびにセグメント継手については、充填材を加圧注入することによって 軸圧縮力が減少することから、引張材である鉄筋ならびにボルトの応力が非常に厳しく なっている。このときのセグメントの状況を図3.5.2-2に示す。加圧可能率の最小値が CAE-1(全周加圧)では充填材硬化後残存圧力作用時(隣接リング含む)に25%、CAE-2 (上下加圧)では充填材硬化後残存圧力作用時(着目リングのみ)および充填材硬化後残 存圧力作用時(隣接リング含む)に38%となっている。セグメントの状況を図3.5.2-2に 示す。

図 3.5.2-2 セグメントの状況模式図

2) 補強リングの応力照査結果

補強リングについては、それぞれの検討ステップでの応力を示している。また、応力 に対する許容応力度の比率を表記しているが、これは既設トンネルにおける加圧可能率 に相当するものである。

補強リングの応力度は、充填材硬化後残存圧力作用時(隣接リング含む)まで許容応力 度の範囲内であり、加圧可能率を発生応力度の安全倍率と読み換えれば、CAE-1(全周 加圧)の安全倍率の最小値は 3.3、CAE-2(上下加圧)の安全倍率の最小値は 1.9 とな り、CAE-1(全周加圧)が CAE-2(上下加圧)よりも応力的に余裕のある状態であると 考えられる。

3) 充填材加圧注入時・充填材硬化後残存圧力作用時の安全性

既設トンネルについては、充填材硬化後残存圧力作用時までの各部応力の安全性を考

慮すると、常時相当の充填材の加圧値を CAE-1(全周加圧)では 50kN/m²(0.25×200kN/m²)、CAE-2(上下加圧)では 76kN/m²(0.38×200kN/m²)以下にする必要がある結果となった。したがって、充填材の加圧値およびセグメントリング内での加圧範囲については、事例毎の既設トンネルの応力状態を十分考慮して設定することが望ましい。

補強リングについては、充填材の加圧設定値(常時相当で 200kN/m²)においても、充 填材硬化後残存圧力作用時までの各部応力は、許容応力度に対して十分余裕のある結果 となった。既設トンネルの安全性を考慮して充填材の加圧力を低減するとすれば、補強 リングについては、今回の構造モデルの場合、その仕様を低減することが可能となる。

- 3.5.3 まとめと課題
 - 1) まとめ

・既設トンネルの安全性を考慮すると、常時相当の充填材の加圧値を 50kN/m²または 76kN/m²以下にする必要がある結果となった。したがって、充填材の加圧値およびセ グメントリング内での加圧範囲については、事例毎の既設トンネルの応力状態を十分 考慮して設定することが望ましい。

・補強リングについては、充填材の加圧設定値(常時相当で 200kN/m²)においても、 充填材硬化後残存圧力作用時までの各部応力は、許容応力度に対して十分余裕のある 結果となった。既設トンネルの安全性を考慮して充填材の加圧力を低減するとすれば、 補強リングについては、今回の構造モデルの場合、その仕様を低減することが可能と なる。

2) 課題

・セグメントリング内における充填材の加圧範囲に関するケーススタディが求められる。

・既設トンネルの安全性を保つ範囲の充填材の加圧値に対して、補強リングの仕様を どの程度低減できるかを確認しておくことが望ましい。

3.6 追加外荷重作用時の補強効果の検討

3.6.1 荷重分担状況

充填材硬化後残存圧力作用時(隣接リング含む)を追加外荷重作用前と考え、追加外荷重 作用時の断面力から追加外荷重作用前の断面力の差を追加外荷重作用時の増分断面力とす る。追加外荷重は既設トンネルに直接作用し、既設トンネルから充填硬化材を介して補強 リングに力が伝達されて、既設トンネルと補強リングによって追加外荷重の荷重分担が行 われる。

今回の解析における追加外荷重の分布形状が等圧に近いことから、軸圧縮力に着目して 既設トンネルと補強リングの荷重分担状況を軸圧縮力の比率によって考える。表 3.6.1-1 に軸圧縮力増分の比率算定結果を示す。

補強リングの軸圧縮力の分担比率は 9%であり、既設トンネルが追加外荷重の大半を担 う結果となっている。表中には、既設トンネルと補強リングのばね換算値を試算的に表記 しているが、補強リングのばね換算値比率は 14%であり、上記の軸圧縮力の分担比率はば ね換算比率よりも小さくなっている。これは、既設トンネルと補強リング間の充填硬化材 の影響によるものと考えられる。

そこで、試算的に図 3.6.1-1 に示す構造モデルにおいて、充填硬化材のばね値を変化さ せた計算を行った。補強リングの軸力分担比率と充填硬化材のばね値の関係を図 3.6.1-2 に示す。解析値に使用した充填硬化材のばね値に対する補強リングの軸力分担比率は 8% となり、上記の結果とほぼ一致するとともに、充填硬化材のばね値を大きくすることによ って、補強リングの軸力分担比率は、補強リングのばね換算値比率 14%に近づく結果とな っている。

補強リングの補強効果について、想定される状況を以下に列挙する。

- ・補強リングの仕様を大きくすることで、当然、補強リングの補強効果は大きくなる。
- ・充填硬化材の圧縮量が大きくなり、既設トンネルが補強リングに直接接する状況になれば、補強リングの荷重分担率は、前述の結果からすると、9%から14%程度に増加する。
- ・既設トンネルに弾性係数の低下などの劣化が発生すれば、補強リングの荷重分担率は 増加する。ただし、劣化したり、許容応力を越える荷重作用を受けた既設トンネルの 耐荷機能をどう位置づけるかが求められる。

		既設トンネル	補強リング	
最大	追加外荷重作用前	496	370	
半回)上前日フJ (kN)	追加外荷重作用時	687	390	
外 [;] 軸圧	荷重作用時の 縮力増分(kN)	191	20	
軸圧縮	力増分の比率(%)	91%	9%	
弾性係数E(kN/m2)	33, 000, 000	210, 000, 000	
断面積A(m2)	0.2	0.0049	
半径r(m)		2.6	2.434	
ばね換算値	k=EA/r(kN/m)	2, 538, 462	422, 761	
ばね換算値	比率(%)	86%	14%	

表 3.6.1-1 軸圧縮力分担率

図 3.6.1-1 解析モデル

3.6.2 まとめと課題

1) まとめ

・設定した検討条件下においては、補強リングの軸力分担率は 9%程度となった。これは、補強リングと既設トンネルのばね換算値比率 14%よりも小さく、充填硬化材の ばね値の影響によるものと考えられる。

2) 課題

・充填硬化材の圧縮量が大きくなり、既設トンネルが補強リングに直接接する状況に なれば、補強リングの荷重分担率は、前述の結果からすると、9%から14%程度に増加 すると考えられる。このとき、補強リングと既設トンネルの離隔、ゴムチューブ厚に よって充填硬化材のばね値をどのように設定するか検討することが望ましい。

 ・既設トンネルに弾性係数の低下などの劣化が発生すれば、補強リングの荷重分担率 は増加する。ただし、劣化したり、許容応力を越える荷重作用を受けた既設トンネル の耐荷機能をどう位置づけるかが求められる

第4章 まとめおよび今後の課題

4.1まとめ

4.1.1 充填材加加圧注入実験

・充填材の硬化過程で浮上り反力が消失するような事象は見られなかった。

・所定の浮上り反力を充填材の硬化過程後に得るためには、所定の浮上り反力に対応する加圧注入圧の1.5倍程度の加圧注入圧とする必要があった。

4.1.2 充填材加圧注入時・補強完了時の安全性の検討

・既設トンネルの安全性を考慮すると、常時相当の充填材の加圧値を 50kN/m² または 7 6kN/m² 以下にする必要がある結果となった。したがって、充填材の加圧値およびセグ メントリング内での加圧範囲については、事例毎の既設トンネルの応力状態を十分考慮 して設定することが望ましい。

・補強リングについては、充填材の加圧設定値(常時相当で 200kN/m²)においても、充 填材硬化後残存圧力作用時までの各部応力は、許容応力度に対して十分余裕のある結果 となった。既設トンネルの安全性を考慮して充填材の加圧力を低減するとすれば、補強 リングについては、今回の構造モデルの場合、その仕様を低減することが可能となる。

4.1.3 補強完了以降の補強効果の検討

・設定した検討条件下においては、補強リングの軸力分担率は9%程度となった。これ は、補強リングと既設トンネルのばね換算値比率よりも小さく、充填硬化材のばね値の 影響によるものと考えられる。

4.2 今後の課題

4.2.1 充填材加加圧注入実験

・充填材の硬化過程における浮上り反力の経時変化を把握するためには、3か月程度以上の長期的な実験を検討することが望ましい。

- ・エア溜まりを解消する対策を検討することが望ましい。
- ・ゴム劣化の影響を把握するための劣化促進試験を検討することが望ましい。

・剛性の低い(実際に則した)蓋状鋼板を用いて加圧注入時のゴムチューブの追随性、

コストダウンのためのゴムチューブ構造の簡素化を検討することが望ましい。

・施工時には加圧注入圧が管理項目として挙げられるが、事前に加圧注入圧によって既 設トンネルならびに補強リングに発生する反力などを把握しておく必要がある。

4.2.2 充填材加圧注入時・補強完了時の安全性の検討

・セグメントリング内における充填材の加圧範囲に関するケーススタディが必要と考えられる。

・既設トンネルの安全性を保つ範囲の充填材の加圧値に対して、補強リングの仕様をど の程度低減できるかを確認しておくことが望ましい。

4.2.3 追加外荷重作用時の補強効果の検討

・充填硬化材の圧縮量が大きくなり、既設トンネルが補強リングに直接接する状況になれば、補強リングの荷重分担率は、今回の結果からすると、9%から14%程度に増加する

と考えられる。このとき、補強リングと既設トンネルの離隔、ゴムチューブ厚によって 充填硬化材のばね値をどのように設定するか検討することが望ましい。

・既設トンネルに弾性係数の低下などの劣化が発生すれば、補強リングの荷重分担率は 増加する。ただし、劣化したり、許容応力を越える荷重作用を受けた既設トンネルの耐 荷機能をどう位置づけるかが求められる。

4.2.4 平成 26 年度実施予定項目

・充填材の加圧注入から充填材の硬化の過程における既設トンネルと補強リングの挙動
 について解析的な検討を行い、加圧注入圧と充填材硬化後残存圧力との関係を推定する。
 ・トンネル仕様、補強原因を要因とする解析的なケーススタディを行い、既設トンネルへの影響、加圧注入仕様(注入圧、加圧範囲)および補強リング仕様について検討する。
 ・補強技術を既設トンネルにあてはめて設計する際の要点と手順について検討する。

・実施工に向けた施工方法の検討を行う。

書名 補助事業名 安全・安心・減災等の確立に資するエンジニアリングの調査研究 報告書名 老朽化トンネル補強技術の研究報告書
発行 平成 26 年 3 月 一般財団法人 エンジニアリング協会 地下開発利用研究センター 〒105-0001 東京都港区虎ノ門三丁目 18 番 19 号 TEL 03-5405-7203 FAX 03-5405-8201
印刷 株式会社 三州社